• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computer aided diagnosis in digital mammography [electronic resource]: classification of mass and normal tissue / by Monika Shinde.

Shinde, Monika. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 63 pages. / Thesis (M.S.C.S.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: The work presented here is an important component of an on going project of developing an automated mass classification system for breast cancer screening and diagnosis for Digital Mammogram applications. Specifically, in this work the task of automatically separating mass tissue from normal breast tissue given a region of interest in a digitized mammogram is investigated. This is the crucial stage in developing a robust automated classification system because the classification depends on the accurate assessment of the tumor-normal tissue border as well as information gathered from the tumor area. In this work the Expectation Maximization (EM) method is developed and applied to high resolution digitized screen-film mammograms with the aim of segmenting normal tissue from mass tissue. / ABSTRACT: Both the raw data and summary data generated by Laws' texture analysis are investigated. Since the ultimate goal is robust classification, the merits of the tissue segmentation are assessed by its impact on the overall classification performance. Based on the 300 image dataset consisting of 97 malignant and 203 benign cases, a 63% sensitivity and 89% specificity was achieved. Although, the segmentation requires further investigation, the development and related computer coding of the EM algorithm was successful. The method was developed to take in account the input feature correlation. This development allows other researchers at this facility to investigate various input features without having the intricate understanding of the EM approach. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
2

Computer Aided Diagnosis In Digital Mammography: Classification Of Mass And Normal Tissue

Shinde, Monika 10 July 2003 (has links)
The work presented here is an important component of an on going project of developing an automated mass classification system for breast cancer screening and diagnosis for Digital Mammogram applications. Specifically, in this work the task of automatically separating mass tissue from normal breast tissue given a region of interest in a digitized mammogram is investigated. This is the crucial stage in developing a robust automated classification system because the classification depends on the accurate assessment of the tumor-normal tissue border as well as information gathered from the tumor area. In this work the Expectation Maximization (EM) method is developed and applied to high resolution digitized screen-film mammograms with the aim of segmenting normal tissue from mass tissue. Both the raw data and summary data generated by Laws' texture analysis are investigated. Since the ultimate goal is robust classification, the merits of the tissue segmentation are assessed by its impact on the overall classification performance. Based on the 300 image dataset consisting of 97 malignant and 203 benign cases, a 63% sensitivity and 89% specificity was achieved. Although, the segmentation requires further investigation, the development and related computer coding of the EM algorithm was successful. The method was developed to take in account the input feature correlation. This development allows other researchers at this facility to investigate various input features without having the intricate understanding of the EM approach.

Page generated in 0.3246 seconds