• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Investigation Into Lead Telluride Lead Sulfide Composites And Bismuth Tin Telluride Alloys For Thermoelectric Applications

Jaworski, Christopher M. 08 December 2008 (has links)
No description available.
2

Study of Thermoelectric Properties of Lead Telluride Based Alloys and Two-Phase Compounds

Bali, Ashoka January 2014 (has links) (PDF)
The growing need of energy worldwide has lead to an increasing demand for alternative sources of power generation. Thermoelectric materials are one of the ‘green energy sources’ which convert directly heat into electricity, and vice–versa. The efficiency of this conversion is dependent on ‘figure of merit’ (z T), which depends on the material’s Seebeck coefficient (S), electrical resistivity (ρ) and thermal conductivity (κ) through the relation z T=S2T/ρκ, where T is the temperature. High values of z T lead to high efficiency, and therefore, z T must be maximized. Lead telluride is well–established thermoelectric material in the temperature range 350 K and 850 K. The aim of this thesis is to improve the z T of the material by adopting two different approaches – (i) doping/alloying and (ii) introducing additional interfaces in bulk i.e. having two phase PbTe. In this thesis, first an introduction about the thermoelectric phenomenon is given, along with the material parameters on which z T depends. A survey of literature associated with PbTe is done and the current status of thermoelectric devices is summarized briefly. This is followed by a description of the synthesis procedure and the measurement techniques adopted in this work. The first approach is the conventional alloying and doping of the material by which carrier concentration of the material is controlled so that maximum power factor Sρ2 is achieved and a simultaneous reduction of thermal conductivity takes place by mass fluctuation scattering. Under this, two systems have been studied. The first system is PbTe1−ySey alloys doped with In (nominal composition: Pb0.999In0.001Te1−ySey, y=0.01, 0.05, 0.10, 0.20, 0.25, 0.30). The compounds were single phase and polycrystalline. Lattice constants obtained from Rietveld refinement of X–ray diffraction (XRD) data showed that Vegard’s law was followed, indicating solid solution formation between PbTe and PbSe. Compositional analysis showed lower indium content than the nominal composition. Temperature dependent Seebeck coefficient showed all the samples to be n–type while Pisarenko plots showed that indium did not act as a resonant dopant. Electrical resistivity increased with temperature, while mobility vs T fitting showed a mixed scattering mechanism of acoustic phonon and ionized impurity scattering. Thermal conductivity followed a T1 dependence, which indicated acoustic phonon scattering. At high temperature, slight bipolar effect was observed, which showed the importance of control-ling carrier concentration for good thermoelectric properties. A z T of 0.66 was achieved at 800 K. The second alloy studied under this approach was Mn doped Pb1−ySnyTe alloy (nominal composition Pb0.96−yMn0.04SnyTe (y=0.56, 0.64, 0.72, 0.80)). All the samples followed Vegard’s law, showing formation of complete solid solution between PbTe and SnTe. Microstructure analysis showed grain size distribution of <1 µm to more than 10 µm. Seebeck coefficient showed all samples were p-type and the role of two valence band conduction in p–type PbTe based materials. Electrical resistivity showed a de-crease possibly due to (i) large carrier concentration or (ii) increased mobility due to Mn2+ ions. Thermal conductivity decreased systematically with decreasing Sn content. Bipolar effect was observed at high temperatures. Accordingly, the highest z T of 0.82 at 720 K was obtained for the sample with Sn (y=0.56) content due to optimum carrier concentration and maximum disorder. The second approach of having additional interfaces in bulk focuses on reducing thermal conductivity by scattering phonons. Under this approach, three systems were studied. The first system is PbTe with bismuth (Bi) secondary phase. The XRD and Ra-man studies showed that bismuth was not a dopant in PbTe, while micrographs showed micrometer–sized Bi secondary phase dispersed in bulk of PbTe. Reduction in Seebeck coefficient showed possible hole donation across PbTe–Bi interfaces, while electrical re-sistivity and thermal conductivity showed that the role of electrons at the interfaces was more important than phonons for the present bismuth concentrations. For the parent PbTe, z T of 0.8 at 725 K was reached, which, however decreased for bismuth added samples. The second system studied under the two phase approach was indium (In) added PbTe. Indium was not found to act as dopant in PbTe, while micrometer sized indium phase was found in PbTe bulk. A decrease in the electronic thermal conductivity ac-companied by a simultaneous increase of the electrical resistivity and Seebeck coefficient throughout the measurement range indicated increased scattering of electrons at PbTe-In interfaces. Higher values of the lattice thermal conductivity showed that the PbTe–In interfaces were ineffective at scattering phonons, which was initially expected due to the lattice mismatch between PbTe and In. For PbTe with 3 at. % In phase, z T value of 0.78 at 723 K was achieved. Under the two phase approach, as a comparative study, PbTe with both micrometer sized Bi and In phases together was prepared, in which no improvement in z T was found. A comparison of both the approaches showed that the alloying approach is better than the two–phase approach. This is because micrometer sized secondary phase scatter the electrons more than the phonons, leading to adverse effect on the transport coef-ficients, and hence, on z T. Alloying, on the other hand, is more beneficial in reducing thermal conductivity by mass fluctuation scattering, along with a simultaneous reduction of electrical resistivity.
3

Thermoelectric properties of rare-earth lead selenide alloys and lead chalcogenide nanocomposites

Thiagarajan, Suraj Joottu 11 December 2007 (has links)
No description available.
4

Synthesis and Characterization of Thermoelectric Nanomaterials

Kadel, Kamal 18 March 2014 (has links)
As existing energy sources have been depleting at a fast pace, thermoelectric (TE) materials have received much attention in recent years because of their role in clean energy generation and conversion. Thermoelectric materials hold promise in terrestrial applications such as waste heat recovery. Bismuth selenide (Bi2Se3), lead telluride (PbTe), skutterudites CoSb3, and Bi-Sb alloys are among the widely investigated thermoelectric materials. Synthesis of above mentioned thermoelectric materials in nanostructured form and their characterization were investigated. Highly crystalline Bi2Se3, undoped and indium (In) doped PbTe, unfilled and ytterbium (Yb) filled CoSb3 nanomaterials were synthesized using hydrothermal/solvothermal technique and Ca-doped Bi-Sb alloy was synthesized using ball milling method. The mechanism of indium doping to the PbTe matrix was investigated using X-ray diffraction, laser-induced breakdown spectroscopy (LIBS) and a first principle calculation. It was found that indium doping, at a level below 2%, is substitution on Pb site. The effects of the amount of sodium borohydride (NaBH4) as the reducing agent and the annealing treatment on the phase transition of CoSb3 were investigated. It was found that a sufficient amount of NaBH4 along with the specific annealing condition was needed for the formation of pure phase CoSb3. Thermoelectric properties of Bi2Se3 and Ca-doped Bi85Sb15 were also investigated. A lower thermal conductivity and a higher Seebeck coefficient were achieved for a Bi2Se3 sample prepared in dimethyl formamide (DMF) at 200ºC for 24 h as compared to bulk Bi2Se3. The decrease in thermal conductivity can be attributed to the increased phonon scattering at the interfaces of the nanostructures and at the grain boundaries in the bulk nanocomposite. The increase in the Seebeck coefficient of Bi2Se3 nanostructures is likely the result of the quantum confinement of the carriers in nanostructures. The effect of calcium doping on Bi85Sb15 nanostructures were investigated. It was found that 2% calcium doped Bi-Sb alloy showed the best TE efficiency due to the enhanced power factor and reduced thermal conductivity.

Page generated in 0.1684 seconds