161 |
Event Detection and Extraction from News ArticlesWang, Wei 21 February 2018 (has links)
Event extraction is a type of information extraction(IE) that works on extracting the specific knowledge of certain incidents from texts. Nowadays the amount of available information (such as news, blogs, and social media) grows in exponential order. Therefore, it becomes imperative to develop algorithms that automatically extract the machine-readable information from large volumes of text data. In this dissertation, we focus on three problems in obtaining event-related information from news articles. (1) The first effort is to comprehensively analyze the performance and challenges in current large-scale event encoding systems. (2) The second problem involves event detection and critical information extractions from news articles. (3) Third, the efforts concentrate on event-encoding which aims to extract event extent and arguments from texts.
We start by investigating the two large-scale event extraction systems (ICEWS and GDELT) in the political science domain. We design a set of experiments to evaluate the quality of the extracted events from the two target systems, in terms of reliability and correctness. The results show that there exist significant discrepancies between the outputs of automated systems and hand-coded system and the accuracy of both systems are far away from satisfying. These findings provide preliminary background and set the foundation for using advanced machine learning algorithms for event related information extraction.
Inspired by the successful application of deep learning in Natural Language Processing (NLP), we propose a Multi-Instance Convolutional Neural Network (MI-CNN) model for event detection and critical sentences extraction without sentence level labels. To evaluate the model, we run a set of experiments on a real-world protest event dataset. The result shows that our model could be able to outperform the strong baseline models and extract the meaningful key sentences without domain knowledge and manually designed features.
We also extend the MI-CNN model and propose an MIMTRNN model for event extraction with distant supervision to overcome the problem of lacking fine level labels and small size training data. The proposed MIMTRNN model systematically integrates the RNN, Multi-Instance Learning, and Multi-Task Learning into a unified framework. The RNN module aims to encode into the representation of entity mentions the sequential information as well as the dependencies between event arguments, which are very useful in the event extraction task. The Multi-Instance Learning paradigm makes the system does not require the precise labels in entity mention level and make it perfect to work together with distant supervision for event extraction. And the Multi-Task Learning module in our approach is designed to alleviate the potential overfitting problem caused by the relatively small size of training data. The results of the experiments on two real-world datasets(Cyber-Attack and Civil Unrest) show that our model could be able to benefit from the advantage of each component and outperform other baseline methods significantly. / Ph. D. / Nowadays the amount of available information (such as news, blogs, and social media) grows in exponential order. The demand of making use of the massive on-line information during decision making process becomes increasing intensive. Therefore, it is imperative to develop algorithms that automatically extract the formatted information from large volumes of the unstructured text data. In this dissertation, we focus on three problems in obtaining event-related information from news articles. (1) The first effort is to comprehensively analyze the performance and challenges in current large-scale event encoding systems. (2) The second problem involves detecting the event and extracting key information about the event in the article. (3) Third, the efforts concentrate on extracting the arguments of the event from the text. We found that there exist significant discrepancies between the outputs of automated systems and hand-coded system and the accuracy of current event extraction systems are far away from satisfying. These findings provide preliminary background and set the foundation for using advanced machine learning algorithms for event related information extraction. Our experiments on two real-world event extraction tasks (Cyber-Attack and Civil Unrest) show the effectiveness of our deep learning approaches for detecting and extracting the event information from unstructured text data.
|
162 |
A Deep Learning Based Pipeline for Image Grading of Diabetic RetinopathyWang, Yu 21 June 2018 (has links)
Diabetic Retinopathy (DR) is one of the principal sources of blindness due to diabetes mellitus. It can be identified by lesions of the retina, namely microaneurysms, hemorrhages, and exudates. DR can be effectively prevented or delayed if discovered early enough and well-managed. Prior studies on diabetic retinopathy typically extract features manually but are time-consuming and not accurate. In this research, we propose a research framework using advanced retina image processing, deep learning, and a boosting algorithm for high-performance DR grading. First, we preprocess the retina image datasets to highlight signs of DR, then follow by a convolutional neural network to extract features of retina images, and finally apply a boosting tree algorithm to make a prediction based on extracted features. Experimental results show that our pipeline has excellent performance when grading diabetic retinopathy images, as evidenced by scores for both the Kaggle dataset and the IDRiD dataset. / Master of Science / Diabetes is a disease in which insulin can not work very well, that leads to long-term high blood sugar level. Diabetic Retinopathy (DR), a result of diabetes mellitus, is one of the leading causes of blindness. It can be identified by lesions on the surface of the retina. DR can be effectively prevented or delayed if discovered early enough and well-managed. Prior image processing studies of diabetic retinopathy typically detect features manually, like retinal lesions, but are time-consuming and not accurate. In this research, we propose a framework using advanced retina image processing, deep learning, and a boosting decision tree algorithm for high-performance DR grading. Deep learning is a method that can be used to extract features of the image. A boosting decision tree is a method widely used in classification tasks. We preprocess the retina image datasets to highlight signs of DR, followed by deep learning to extract features of retina images. Then, we apply a boosting decision tree algorithm to make a prediction based on extracted features. The results of experiments show that our pipeline has excellent performance when grading the diabetic retinopathy score for both Kaggle and IDRiD datasets.
|
163 |
Assaying T Cell Function by Morphometric Analysis and Image-Based Deep LearningWang, Xin January 2024 (has links)
Immune cell function varies tremendously between individuals, posing a major challenge to the development and success of emerging cellular immunotherapies. In the context of T cell therapy for cancer, long-term diseases such as Chronic Lymphocytic Leukemia (CLL) often induce T cell deficiencies resembling cellular exhaustion, complicating the preparation of therapeutic quantities of cells and maintaining efficacy once reintroduced to patients. The ability to rapidly estimate the responsiveness of an individual’s T cells could provide a powerful tool for tailoring treatment conditions and monitoring T cell functionality over the course of therapy.
This dissertation investigates the use of short-term cellular behavior assays as a predictive indicator of long-term T cell function. Specifically, the short-term spreading of T cells on functionalized planar, elastic surfaces was quantified by 11 morphological parameters. These parameters were analyzed to discern the impact of both intrinsic factors, such as disease state, and extrinsic factors, such as substrate stiffness. This study identified morphological features that varied between T cells isolated from healthy donors and those from patients being treated for CLL. Combining multiple features through a machine learning approach such as Decision Tree or Random Forest provided an effective means for identifying whether T cells came from healthy or CLL donors.
To further automate this assay and enhance the classification outcome, an image-based deep learning workflow was developed. The image-based deep learning approach notably outperformed morphometric analysis and showed great promise in classifying both intrinsic disease states and extrinsic environmental stiffness. Furthermore, we applied this imaging-based deep learning method to predict T cell proliferative capacity under different stiffness conditions, enabling rapid and efficient optimization of T cell expansion conditions to better guide cellular immunotherapy. Looking ahead, future efforts will focus on optimizing and generalizing the model to enhance its predictive accuracy and applicability across diverse patient populations.
Additionally, we aim to incorporate multi-channel imaging that captures detailed T cell subset information, enabling the model to better understand the complex interactions between different cellular features and their influence on long-term proliferation. Our ultimate vision is to translate this technology into an automated device that offers a streamlined and efficient assessment of T cell functions. This device could serve as a critical tool in optimizing T cell production and monitoring T cell functions for both autologous and allogeneic cell therapies, significantly improving the effectiveness and personalization of cancer immunotherapy.
|
164 |
Developing fast machine learning techniques with applications to steganalysis problemsMiche, Yoan 02 November 2010 (has links) (PDF)
Depuis que les Hommes communiquent, le besoin de dissimuler tout ou partie de la communication existe. On peut citer au moins deux formes de dissimulation d'un message au sein d'une communication: Dans le premier cas, le message à envoyer peut lui même être modifié, de telle sorte que seul le destinataire puisse le décoder. La cryptographie s'emploie par exemple à cette tâche. Une autre forme est celle de la stéganographie, qui vise à dissimuler le message au sein d'un document. Et de même que pour la cryptographie dont le pendant est la cryptanalyse visant à décrypter le message, la stéganalyse est à l'opposé de la stéganographie et se charge de détecter l'existence d'un message. Le terme de stéganalyse peut également désigner l'importante classe de problèmes liés à la détection de l'existence du message mais aussi à l'estimation de sa taille (stéganalyse quantitative) ou encore de son contenu. Dans cette thèse, l'accent est tout d'abord mis sur le problème classique de stéganalyse (détection de la présence du message). Une méthodologie permettant d'obtenir des résultats statistiquement fiables dans ce contexte est proposée. Il sagit tout d'abord d'estimer le nombre d'échantillons (ici des images) suffisant à l'obtention de résultats pertinents, puis de réduire la dimensionalité du problème par une approche basée sur la sélection de variables. Dans le contexte de la stéganalyse, la plupart des variables obtenues peuvent être interprétées physiquement, ce qui permet une interprétation de la sélection de variables obtenue: les variables sélectionnées en premier réagissent vraisemblablement de façon importante aux changements causés par la présence du message. Leur analyse peut permettre de comprendre le fonctionnement et les faiblesses de l'algorithme de stéganographie utilisé, par exemple. Cette méthodologie peut s'avérer complexe en termes de calculs et donc nécessiter des temps d'éxecution importants. Pour pallier à ce problème, un nouveau modèle pour le "Machine Learning" est proposé, l'OP-ELM. L'OPELM est constitué d'un Réseau de Neurones au sein duquel des projections aléatoires sont utilisées. Les neurones sont ensuite classés par pertinence vis à vis du problème, et seuls les plus pertinents sont conservés. Cette structure de modèle parvient à obtenir des performances similaires à celles de l'état de l'art dans le domaine du "Machine Learning". Enfin, le modèle OP-ELM est utilisé dans le cadre de la stéganalyse quantitative, cette fois (l'estimation de la taille du message). Une approche nouvelle sur ce problème est utilisée, faisant appel à une technique de ré-insertion d'un message au sein d'une image considérée comme suspecte. En répétant ce processus de ré-insertion un certain nombre de fois, et pour des messages connus de tailles différentes, il est possible d'estimer la taille du message original utilisé par l'expéditeur. De plus, par l'utilisation de la largeur de l'intervalle de confiance obtenu sur la taille du message original, une mesure de la difficulté intrinsèque à l'image est présentée. Ceci permet d'estimer la fiabilité de la prédiction obtenue pour la taille du message original.
|
165 |
Detecção de ilhamento de Geradores Distribuídos utilizando Transformada S e Redes Neurais Artificiais com Máquina de Aprendizado Extremo / Islanding detection for Distributed Generators using S-transform and Artificial Neural Networks with Extreme Learning MachineMenezes, Thiago Souza 24 May 2019 (has links)
A conexão de Geradores Distribuídos (GDs) no sistema de distribuição vem se intensificando nos últimos anos. Neste cenário, o aumento de GDs pode trazer alguns benefícios, como a redundância da geração e redução das perdas elétricas. Por outro lado, o problema do ilhamento também vem se destacando. Atualmente, existem técnicas já consolidadas para a detecção do ilhamento, sendo que as técnicas passivas estão entre as mais utilizadas. Entretanto, as técnicas passivas são bastante dependentes do desbalanço de potência entre a geração e as cargas no momento de ocorrência do ilhamento para atuarem corretamente. Caso o desbalanço de potência seja pequeno, as técnicas passivas tendem a não identificar o ilhamento, gerando as chamadas Zonas de Não Detecção (ZNDs). Para mitigar este problema, a pesquisa por técnicas passivas inteligentes baseadas em aprendizagem de máquina vem se tornando cada vez mais comum. Neste trabalho foi modelada uma proteção anti-ilhamento baseada em Redes Neurais Artificiais (RNAs). A classificação do ilhamento é feita com base no espectro de frequência das tensões nos terminais do GD com o uso da Transformada de Stockwell, ou apenas Transformada S (TS). Outro ponto importante da metodologia foi a implementação de uma etapa de detecção de eventos, também baseada nas energias do espectro de frequência das tensões, para evitar a constante execução do classificador. Assim, a RNA apenas irá classificar o evento após receber um sinal de trigger da etapa de detecção de evento. Para o treinamento da RNA foram testados dois algoritmos diferentes, o clássico Backpropagation (BP) e a Máquina de Aprendizado Extremo, do inglês Extreme Learning Machine (ELM). Ressalta-se o melhor desempenho obtido com as redes treinadas pelo ELM, que apresentaram uma capacidade de generalização muito maior, logo, resultando em taxas de acerto mais elevadas. De modo geral, depois de comparada com métodos passivos convencionais para a detecção de ilhamento, a proteção proposta se mostrou mais precisa e com um tempo de detecção muito menor, sendo inferior a 2 ciclos. Por fim, ainda foi realizada a análise das ZNDs para a proteção proposta e as técnicas convencionais, por ser uma característica muito importante para a proteção antiilhamento, mas que não é comumente abordada para técnicas passivas inteligentes. Nesta análise, o método para a detecção de ilhamento proposto novamente se sobressaiu às técnicas convencionais, apresentado uma ZND muito menor. / The connection of distributed generators (DG) in the distribution system has been intensified in the recent years. In this scenario, the increase of DG can bring some benefits, such as generation redundancy and reduction of power losses. On the other hand, the problem of islanding is also been highlighted. Currently, there are already consolidated techniques for islanding detection, and passive techniques are among the most used ones. However, the passive techniques are very dependent of the power unbalance between the generation and the loads at the moment of the islanding in order to actuate properly. If the power mismatch is small, the passive techniques tend to not identify the islanding, generating the so called Non-Detection Zones (NDZ). To mitigate this issue, the research of intelligent passive techniques based in machine learning is becoming more common. In this study, an anti-islanding protection based on Artificial Neural Networks (ANN) was modelled. The islanding classification is done based on the frequency spectrum of the DG\'s terminal voltages using the Stockwell Transform, or just S-Transform (ST). Another important point of the methodology was the implementation of an event detection stage, also based on the energies of the voltages frequency spectrum, to avoid the constant execution of the classifier. Therefore, the ANN will only classify the event after receiving a trigger signal from the event detection stage. To train the ANN, two different algorithms were tested: the classic Backpropagation and the Extreme Learning Machine (ELM). It is noteworthy the better performance obtained with the neural networks trained by the ELM, which had a greater capacity of generalization, hence resulting in higher success rates. In general, after being compared with conventional passive techniques for islanding detection, the proposed protection was more accurate and with a much smaller detection time, being less than 2 cycles. Finally, the analysis of the NDZ for the proposed protection and the conventional techniques was carried out, as it is a very important feature for anti-islanding protection, but is not commonly addressed for intelligent passive techniques. In this analysis, the islanding detection method proposed again overcame the conventional techniques, presenting a much smaller NDZ.
|
166 |
Sumarização multidocumento com base em aspectos informativos / Multidocument summarization based on information aspectsGaray, Alessandro Yovan Bokan 20 August 2015 (has links)
A sumarização multidocumento consiste na produção de um sumário/resumo a partir de uma coleção de textos sobre um mesmo assunto. Devido à grande quantidade de informação disponível na Web, esta tarefa é de grande relevância já que pode facilitar a leitura dos usuários. Os aspectos informativos representam as unidades básicas de informação presentes nos textos. Por exemplo, em textos jornalísticos em que se relata um fato/acontecimento, os aspectos podem representar a seguintes informações: o que aconteceu, onde aconteceu, quando aconteceu, como aconteceu, e por que aconteceu. Conhecendo-se esses aspectos e as estratégias de produção e organização de sumários, é possível automatizar a tarefa de sumarização. No entanto, para o Português do Brasil, não há pesquisa feita sobre sumarização com base em aspectos. Portanto, neste trabalho de mestrado, investigaram-se métodos de sumarização multidocumento com base em aspectos informativos, pertencente à abordagem profunda para a sumarização, em que se busca interpretar o texto para se produzir sumários mais informativos. Em particular, implementaram-se duas etapas relacionadas: (i) identificação automática de aspectos os aspectos informativos e (ii) desenvolvimento e avaliação de dois métodos de sumarização com base em padrões de aspectos (ou templates) em sumários. Na etapa (i), criaram-se classificadores de aspectos com base em anotador de papéis semânticos, reconhecedor de entidades mencionadas, regras manuais e técnicas de aprendizado de máquina. Avaliaram-se os classificadores sobre o córpus CSTNews (Rassi et al., 2013; Felippo et al., 2014). Os resultados foram satisfatórios, demostrando que alguns aspectos podem ser identificados automaticamente em textos jornalísticos com um desempenho razoável. Já na etapa (ii), elaboraram-se dois métodos inéditos de sumarização multidocumento com base em aspectos. Os resultados obtidos mostram que os métodos propostos neste trabalho são competitivos com os métodos da literatura. Salienta-se que esta abordagem para sumarização tem recebido grande destaque ultimamente. Além disso, é inédita nos trabalhos desenvolvidos no Brasil, podendo trazer contribuições importantes para a área. / Multi-document summarization is the task of automatically producing a unique summary from a group of texts on the same topic. With the huge amount of available information in the web, this task is very relevant because it can facilitate the reading of the users. Informative aspects, in particular, represent the basic information units in texts and summaries, e.g., in news texts there should be the following information: what happened, when it happened, where it happened, how it happened and why it happened. Knowing these aspects and the strategies to produce and organize summaries, it is possible to automate the aspect-based summarization. However, there is no research about aspect-based multi-document summarization for Brazilian Portuguese. This research work investigates multi-document summarization methods based on informative aspects, which follows the deep approach for summarization, in which it aims at interpreting the texts to produce more informative summaries. In particular, two main stages are developed: (i) the automatic identification of informative aspects and (ii) and the development and evaluation of two summarization methods based on aspects patterns (or templates). In the step (i) classifiers were created based on semantic role labeling, named entity recognition, handcrafted rules and machine learning techniques. Classifiers were evaluated on the CSTNews annotated corpus (Rassi et al., 2013; Felippo et al., 2014). The results were satisfactory, demonstrating that some aspects can be automatically identified in the news with a reasonable performance. In the step (ii) two novels aspect-based multi-document summarization methods are elaborated. The results show that the proposed methods in this work are competitive with the classical methods. It should be noted that this approach has lately received a lot of attention. Furthermore, it is unprecedented in the summarization task developed in Brazil, with the potential to bring important contributions to the area.
|
167 |
Performance comparison of support vector machine and relevance vector machine classifiers for functional MRI dataPerez, Daniel Antonio 12 July 2010 (has links)
Multivariate pattern analysis (MVPA) of fMRI data has been growing in popularity due to its sensitivity to networks of brain activation. It is performed in a predictive modeling framework which is natural for implementing brain state prediction and real-time fMRI applications such as brain computer interfaces. Support vector machines (SVM) have been particularly popular for MVPA owing to their high prediction accuracy even with noisy datasets. Recent work has proposed the use of relevance vector machines (RVM) as an alternative to SVM. RVMs are particularly attractive in time sensitive applications such as real-time fMRI since they tend to perform classification faster than SVMs. Despite the use of both methods in fMRI research, little has been done to compare the performance of these two techniques. This study compares RVM to SVM in terms of time and accuracy to determine which is better suited to real-time applications.
|
168 |
Learning without labels and nonnegative tensor factorizationBalasubramanian, Krishnakumar 08 April 2010 (has links)
Supervised learning tasks like building a classifier, estimating the error rate of the
predictors, are typically performed with labeled data. In most cases, obtaining labeled data
is costly as it requires manual labeling. On the other hand, unlabeled data is available in
abundance. In this thesis, we discuss methods to perform supervised learning tasks with
no labeled data. We prove consistency of the proposed methods and demonstrate its applicability
with synthetic and real world experiments. In some cases, small quantities of labeled data maybe easily available and supplemented with large quantities of unlabeled data (semi-supervised learning). We derive the asymptotic efficiency of generative models for semi-supervised learning and quantify the effect of labeled and unlabeled data on the quality of the estimate. Another independent track of the thesis is efficient computational methods for nonnegative tensor factorization (NTF). NTF provides the user with rich modeling capabilities but it comes with an added computational cost. We provide a fast algorithm for performing NTF using a modified active set method called block principle pivoting method and demonstrate its applicability to social network analysis and text
mining.
|
169 |
Functional data mining with multiscale statistical proceduresLee, Kichun 01 July 2010 (has links)
Hurst exponent and variance are two quantities that often characterize real-life, highfrequency
observations. We develop the method for simultaneous estimation of a timechanging
Hurst exponent H(t) and constant scale (variance) parameter C in a multifractional
Brownian motion model in the presence of white noise based on the asymptotic behavior of
the local variation of its sample paths. We also discuss the accuracy of the stable and simultaneous
estimator compared with a few selected methods and the stability of computations
that use adapted wavelet filters.
Multifractals have become popular as flexible models in modeling real-life data of high
frequency. We developed a method of testing whether the data of high frequency is consistent
with monofractality using meaningful descriptors coming from a wavelet-generated multifractal
spectrum. We discuss theoretical properties of the descriptors, their computational
implementation, the use in data mining, and the effectiveness in the context of simulations,
an application in turbulence, and analysis of coding/noncoding regions in DNA sequences.
The wavelet thresholding is a simple and effective operation in wavelet domains that selects
the subset of wavelet coefficients from a noised signal. We propose the selection of this
subset in a semi-supervised fashion, in which a neighbor structure and classification function
appropriate for wavelet domains are utilized. The decision to include an unlabeled coefficient
in the model depends not only on its magnitude but also on the labeled and unlabeled
coefficients from its neighborhood. The theoretical properties of the method are discussed
and its performance is demonstrated on simulated examples.
|
170 |
Enhanced classification approach with semi-supervised learning for reliability-based system designPatel, Jiten 02 July 2012 (has links)
Traditionally design engineers have used the Factor of Safety method for ensuring that designs do not fail in the field. Access to advanced computational tools and resources have made this process obsolete and new methods to introduce higher levels of reliability in an engineering systems are currently being investigated. However, even though high computational resources are available the computational resources required by reliability analysis procedures leave much to be desired. Furthermore, the regression based surrogate modeling techniques fail when there is discontinuity in the design space, caused by failure mechanisms, when the design is required to perform under severe externalities. Hence, in this research we propose efficient Semi-Supervised Learning based surrogate modeling techniques that will enable accurate estimation of a system's response, even under discontinuity. These methods combine the available set of labeled dataset and unlabeled dataset and provide better models than using labeled data alone. Labeled data is expensive to obtain since the responses have to be evaluated whereas unlabeled data is available in plenty, during reliability estimation, since the PDF information of uncertain variables is assumed to be known. This superior performance is gained by combining the efficiency of Probabilistic Neural Networks (PNN) for classification and Expectation-Maximization (EM) algorithm for treating the unlabeled data as labeled data with hidden labels.
|
Page generated in 0.0835 seconds