Spelling suggestions: "subject:"least square problems""
1 |
On Some Properties of Interior Methods for OptimizationSporre, Göran January 2003 (has links)
This thesis consists of four independent papers concerningdifferent aspects of interior methods for optimization. Threeof the papers focus on theoretical aspects while the fourth oneconcerns some computational experiments. The systems of equations solved within an interior methodapplied to a convex quadratic program can be viewed as weightedlinear least-squares problems. In the first paper, it is shownthat the sequence of solutions to such problems is uniformlybounded. Further, boundedness of the solution to weightedlinear least-squares problems for more general classes ofweight matrices than the one in the convex quadraticprogramming application are obtained as a byproduct. In many linesearch interior methods for nonconvex nonlinearprogramming, the iterates can "falsely" converge to theboundary of the region defined by the inequality constraints insuch a way that the search directions do not converge to zero,but the step lengths do. In the sec ond paper, it is shown thatthe multiplier search directions then diverge. Furthermore, thedirection of divergence is characterized in terms of thegradients of the equality constraints along with theasymptotically active inequality constraints. The third paper gives a modification of the analytic centerproblem for the set of optimal solutions in linear semidefiniteprogramming. Unlike the normal analytic center problem, thesolution of the modified problem is the limit point of thecentral path, without any strict complementarity assumption.For the strict complementarity case, the modified problem isshown to coincide with the normal analytic center problem,which is known to give a correct characterization of the limitpoint of the central path in that case. The final paper describes of some computational experimentsconcerning possibilities of reusing previous information whensolving system of equations arising in interior methods forlinear programming. <b>Keywords:</b>Interior method, primal-dual interior method,linear programming, quadratic programming, nonlinearprogramming, semidefinite programming, weighted least-squaresproblems, central path. <b>Mathematics Subject Classification (2000):</b>Primary90C51, 90C22, 65F20, 90C26, 90C05; Secondary 65K05, 90C20,90C25, 90C30.
|
2 |
On Some Properties of Interior Methods for OptimizationSporre, Göran January 2003 (has links)
<p>This thesis consists of four independent papers concerningdifferent aspects of interior methods for optimization. Threeof the papers focus on theoretical aspects while the fourth oneconcerns some computational experiments.</p><p>The systems of equations solved within an interior methodapplied to a convex quadratic program can be viewed as weightedlinear least-squares problems. In the first paper, it is shownthat the sequence of solutions to such problems is uniformlybounded. Further, boundedness of the solution to weightedlinear least-squares problems for more general classes ofweight matrices than the one in the convex quadraticprogramming application are obtained as a byproduct.</p><p>In many linesearch interior methods for nonconvex nonlinearprogramming, the iterates can "falsely" converge to theboundary of the region defined by the inequality constraints insuch a way that the search directions do not converge to zero,but the step lengths do. In the sec ond paper, it is shown thatthe multiplier search directions then diverge. Furthermore, thedirection of divergence is characterized in terms of thegradients of the equality constraints along with theasymptotically active inequality constraints.</p><p>The third paper gives a modification of the analytic centerproblem for the set of optimal solutions in linear semidefiniteprogramming. Unlike the normal analytic center problem, thesolution of the modified problem is the limit point of thecentral path, without any strict complementarity assumption.For the strict complementarity case, the modified problem isshown to coincide with the normal analytic center problem,which is known to give a correct characterization of the limitpoint of the central path in that case.</p><p>The final paper describes of some computational experimentsconcerning possibilities of reusing previous information whensolving system of equations arising in interior methods forlinear programming.</p><p><b>Keywords:</b>Interior method, primal-dual interior method,linear programming, quadratic programming, nonlinearprogramming, semidefinite programming, weighted least-squaresproblems, central path.</p><p><b>Mathematics Subject Classification (2000):</b>Primary90C51, 90C22, 65F20, 90C26, 90C05; Secondary 65K05, 90C20,90C25, 90C30.</p>
|
3 |
Maticové výpočty pro roztoky a směsi vícesložkové / Matrix computations for mixtures and solutionsVoborníková, Iveta January 2021 (has links)
Charles University in Prague, Faculty of Pharmacy in Hradec Králové Department of Biophysics and Physical Chemistry Candidate: Iveta Voborníková Thesis supervisor: doc. Dipl.-Math. Erik Jurjen Duintjer Tebbens, Ph.D. Title of diploma thesis: Matrix computations for mixtures and solutions In this work, we determined drug concentrations from mixtures using multicompo- nent analysis without separating them. The condition was the knowledge of the molar absorption coefficients of individual drugs for certain wavelenghts. To do this, we used tools from matrix calculations, especially the Moore-Penrose inverse, and we were in- terested in whether we would achieve more accurate results using standard, square systems or overdetermined systems of linear equations. Based on the results, we came to the conclusion that there is no dependence between the accuracy of the results and the number of wavelengths used. Only in some cases did the results appear to be more accurate when using overdetermined systems with a higher number of wavelengths. Keywords: mixtures, solutions, linear systems, least squares problems, Moore-Penrose pseudoinverses 1
|
4 |
On Updating Preconditioners for the Iterative Solution of Linear SystemsGuerrero Flores, Danny Joel 02 July 2018 (has links)
El tema principal de esta tesis es el desarrollo de técnicas de actualización de precondicionadores para resolver sistemas lineales de gran tamaño y dispersos Ax=b mediante el uso de métodos iterativos de Krylov. Se consideran dos tipos interesantes de problemas. En el primero se estudia la solución iterativa de sistemas lineales no singulares y antisimétricos, donde la matriz de coeficientes A tiene parte antisimétrica de rango bajo o puede aproximarse bien con una matriz antisimétrica de rango bajo. Sistemas como este surgen de la discretización de PDEs con ciertas condiciones de frontera de Neumann, la discretización de ecuaciones integrales y métodos de puntos interiores, por ejemplo, el problema de Bratu y la ecuación integral de Love. El segundo tipo de sistemas lineales considerados son problemas de mínimos cuadrados (LS) que se resuelven considerando la solución del sistema equivalente de ecuaciones normales. Concretamente, consideramos la solución de problemas LS modificados y de rango incompleto. Por problema LS modificado se entiende que el conjunto de ecuaciones lineales se actualiza con alguna información nueva, se agrega una nueva variable o, por el contrario, se elimina alguna información o variable del conjunto. En los problemas LS de rango deficiente, la matriz de coeficientes no tiene rango completo, lo que dificulta el cálculo de una factorización incompleta de las ecuaciones normales. Los problemas LS surgen en muchas aplicaciones a gran escala de la ciencia y la ingeniería como, por ejemplo, redes neuronales, programación lineal, sismología de exploración o procesamiento de imágenes.
Los precondicionadores directos para métodos iterativos usados habitualmente son las factorizaciones incompletas LU, o de Cholesky cuando la matriz es simétrica definida positiva. La principal contribución de esta tesis es el desarrollo de técnicas de actualización de precondicionadores. Básicamente, el método consiste en el cálculo de una descomposición incompleta para un sistema lineal aumentado equivalente, que se utiliza como precondicionador para el problema original.
El estudio teórico y los resultados numéricos presentados en esta tesis muestran el rendimiento de la técnica de precondicionamiento propuesta y su competitividad en comparación con otros métodos disponibles en la literatura para calcular precondicionadores para los problemas estudiados. / The main topic of this thesis is updating preconditioners for solving large sparse linear systems Ax=b by using Krylov iterative methods. Two interesting types of problems are considered. In the first one is studied the iterative solution of non-singular, non-symmetric linear systems where the coefficient matrix A has a skew-symmetric part of low-rank or can be well approximated with a skew-symmetric low-rank matrix. Systems like this arise from the discretization of PDEs with certain Neumann boundary conditions, the discretization of integral equations as well as path following methods, for example, the Bratu problem and the Love's integral equation. The second type of linear systems considered are least squares (LS) problems that are solved by considering the solution of the equivalent normal equations system. More precisely, we consider the solution of modified and rank deficient LS problems. By modified LS problem, it is understood that the set of linear relations is updated with some new information, a new variable is added or, contrarily, some information or variable is removed from the set. Rank deficient LS problems are characterized by a coefficient matrix that has not full rank, which makes difficult the computation of an incomplete factorization of the normal equations. LS problems arise in many large-scale applications of the science and engineering as for instance neural networks, linear programming, exploration seismology or image processing.
Usually, incomplete LU or incomplete Cholesky factorization are used as preconditioners for iterative methods. The main contribution of this thesis is the development of a technique for updating preconditioners by bordering. It consists in the computation of an approximate decomposition for an equivalent augmented linear system, that is used as preconditioner for the original problem.
The theoretical study and the results of the numerical experiments presented in this thesis show the performance of the preconditioner technique proposed and its competitiveness compared with other methods available in the literature for computing preconditioners for the problems studied. / El tema principal d'esta tesi és actualitzar precondicionadors per a resoldre sistemes lineals grans i buits Ax=b per mitjà de l'ús de mètodes iteratius de Krylov. Es consideren dos tipus interessants de problemes. En el primer s'estudia la solució iterativa de sistemes lineals no singulars i antisimètrics, on la matriu de coeficients A té una part antisimètrica de baix rang, o bé pot aproximar-se amb una matriu antisimètrica de baix rang. Sistemes com este sorgixen de la discretització de PDEs amb certes condicions de frontera de Neumann, la discretització d'equacions integrals i mètodes de punts interiors, per exemple, el problema de Bratu i l'equació integral de Love. El segon tipus de sistemes lineals considerats, són problemes de mínims quadrats (LS) que es resolen considerant la solució del sistema equivalent d'equacions normals. Concretament, considerem la solució de problemes de LS modificats i de rang incomplet. Per problema LS modificat, s'entén que el conjunt d'equacions lineals s'actualitza amb alguna informació nova, s'agrega una nova variable o, al contrari, s'elimina alguna informació o variable del conjunt. En els problemes LS de rang deficient, la matriu de coeficients no té rang complet, la qual cosa dificultata el calcul d'una factorització incompleta de les equacions normals. Els problemes LS sorgixen en moltes aplicacions a gran escala de la ciència i l'enginyeria com, per exemple, xarxes neuronals, programació lineal, sismologia d'exploració o processament d'imatges.
Els precondicionadors directes per a mètodes iteratius utilitzats més a sovint són les factoritzacions incompletes tipus ILU, o la factorització incompleta de Cholesky quan la matriu és simètrica definida positiva. La principal contribució d'esta tesi és el desenvolupament de tècniques d'actualització de precondicionadors. Bàsicament, el mètode consistix en el càlcul d'una descomposició incompleta per a un sistema lineal augmentat equivalent, que s'utilitza com a precondicionador pel problema original.
L'estudi teòric i els resultats numèrics presentats en esta tesi mostren el rendiment de la tècnica de precondicionament proposta i la seua competitivitat en comparació amb altres mètodes disponibles en la literatura per a calcular precondicionadors per als problemes considerats. / Guerrero Flores, DJ. (2018). On Updating Preconditioners for the Iterative Solution of Linear Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/104923
|
5 |
The Kronecker ProductBroxson, Bobbi Jo 01 January 2006 (has links)
This paper presents a detailed discussion of the Kronecker product of matrices. It begins with the definition and some basic properties of the Kronecker product. Statements will be proven that reveal information concerning the eigenvalues, singular values, rank, trace, and determinant of the Kronecker product of two matrices. The Kronecker product will then be employed to solve linear matrix equations. An investigation of the commutativity of the Kronecker product will be carried out using permutation matrices. The Jordan - Canonical form of a Kronecker product will be examined. Variations such as the Kronecker sum and generalized Kronecker product will be introduced. The paper concludes with an application of the Kronecker product to large least squares approximations.
|
6 |
Řešení problému nejmenších čtverců s maticemi o proměnlivé hustotě nenulových prvků / Least-squares problems with sparse-dense matricesRiegerová, Ilona January 2020 (has links)
Problém nejmenších čtverc· (dále jen LS problém) je aproximační úloha řešení soustav lineárních algebraických rovnic, které jsou z nějakého d·vodu za- tíženy chybami. Existence a jednoznačnost řešení a metody řešení jsou známé pro r·zné typy matic, kterými tyto soustavy reprezentujeme. Typicky jsou ma- tice řídké a obrovských dimenzí, ale velmi často dostáváme z praxe i úlohy s maticemi o proměnlivé hustotě nenulových prvk·. Těmi se myslí řídké matice s jedním nebo více hustými řádky. Zde rozebíráme metody řešení tohoto LS pro- blému. Obvykle jsou založeny na rozdělení úlohy na hustou a řídkou část, které řeší odděleně. Tak pro řídkou část m·že přestat platit předpoklad plné sloupcové hodnosti, který je potřebný pro většinu metod. Proto se zde speciálně zabýváme postupy, které tento problém řeší. 1
|
7 |
Computation of Parameters in some Mathematical ModelsWikström, Gunilla January 2002 (has links)
<p>In computational science it is common to describe dynamic systems by mathematical models in forms of differential or integral equations. These models may contain parameters that have to be computed for the model to be complete. For the special type of ordinary differential equations studied in this thesis, the resulting parameter estimation problem is a separable nonlinear least squares problem with equality constraints. This problem can be solved by iteration, but due to complicated computations of derivatives and the existence of several local minima, so called short-cut methods may be an alternative. These methods are based on simplified versions of the original problem. An algorithm, called the modified Kaufman algorithm, is proposed and it takes the separability into account. Moreover, different kinds of discretizations and formulations of the optimization problem are discussed as well as the effect of ill-conditioning.</p><p>Computation of parameters often includes as a part solution of linear system of equations <i>Ax = b</i>. The corresponding pseudoinverse solution depends on the properties of the matrix <i>A</i> and vector <i>b</i>. The singular value decomposition of <i>A</i> can then be used to construct error propagation matrices and by use of these it is possible to investigate how changes in the input data affect the solution <i>x</i>. Theoretical error bounds based on condition numbers indicate the worst case but the use of experimental error analysis makes it possible to also have information about the effect of a more limited amount of perturbations and in that sense be more realistic. It is shown how the effect of perturbations can be analyzed by a semi-experimental analysis. The analysis combines the theory of the error propagation matrices with an experimental error analysis based on randomly generated perturbations that takes the structure of <i>A</i> into account</p>
|
8 |
Computation of Parameters in some Mathematical ModelsWikström, Gunilla January 2002 (has links)
In computational science it is common to describe dynamic systems by mathematical models in forms of differential or integral equations. These models may contain parameters that have to be computed for the model to be complete. For the special type of ordinary differential equations studied in this thesis, the resulting parameter estimation problem is a separable nonlinear least squares problem with equality constraints. This problem can be solved by iteration, but due to complicated computations of derivatives and the existence of several local minima, so called short-cut methods may be an alternative. These methods are based on simplified versions of the original problem. An algorithm, called the modified Kaufman algorithm, is proposed and it takes the separability into account. Moreover, different kinds of discretizations and formulations of the optimization problem are discussed as well as the effect of ill-conditioning. Computation of parameters often includes as a part solution of linear system of equations Ax = b. The corresponding pseudoinverse solution depends on the properties of the matrix A and vector b. The singular value decomposition of A can then be used to construct error propagation matrices and by use of these it is possible to investigate how changes in the input data affect the solution x. Theoretical error bounds based on condition numbers indicate the worst case but the use of experimental error analysis makes it possible to also have information about the effect of a more limited amount of perturbations and in that sense be more realistic. It is shown how the effect of perturbations can be analyzed by a semi-experimental analysis. The analysis combines the theory of the error propagation matrices with an experimental error analysis based on randomly generated perturbations that takes the structure of A into account
|
Page generated in 0.0782 seconds