• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distributed Algorithms for SVD-based Least Squares Estimation

Peng, Yu-Ting 19 July 2011 (has links)
Singular value decomposition (SVD) is a popular decomposition method for solving least-squares estimation problems. However, for large datasets, SVD is very time consuming and memory demanding in obtaining least squares solutions. In this paper, we propose a least squares estimator based on an iterative divide-and-merge scheme for large-scale estimation problems. The estimator consists of several levels. At each level, the input matrices are subdivided into submatrices. The submatrices are decomposed by SVD respectively and the results are merged into smaller matrices which become the input of the next level. The process is iterated until the resulting matrices are small enough which can then be solved directly and efficiently by the SVD algorithm. However, the iterative divide-and-merge algorithms executed on a single machine is still time demanding on large scale datasets. We propose two distributed algorithms to overcome this shortcoming by permitting several machines to perform the decomposition and merging of the submatrices in each level in parallel. The first one is implemented in MapReduce on the Hadoop distributed platform which can run the tasks in parallel on a collection of computers. The second one is implemented on CUDA which can run the tasks in parallel using the Nvidia GPUs. Experimental results demonstrate that the proposed distributed algorithms can greatly reduce the time required to solve large-squares problems.
2

Analysis of Fix‐point Aspects for Wireless Infrastructure Systems

Grill, Andreas, Englund, Robin January 2009 (has links)
A large amount of today’s telecommunication consists of mobile and short distance wireless applications, where the effect of the channel is unknown and changing over time, and thus needs to be described statistically. Therefore the received signal can not be accurately predicted and has to be estimated. Since telecom systems are implemented in real-time, the hardware in the receiver for estimating the sent signal can for example be based on a DSP where the statistic calculations are performed. A fixed-point DSP with a limited number of bits and a fixed binary point causes larger quantization errors compared to floating point operations with higher accuracy. The focus on this thesis has been to build a library of functions for handling fixed-point data. A class that can handle the most common arithmetic operations and a least squares solver for fixed-point have been implemented in MATLAB code. The MATLAB Fixed-Point Toolbox could have been used to solve this task, but in order to have full control of the algorithms and the fixed-point handling an independent library was created. The conclusion of the simulation made in this thesis is that the least squares result are depending more on the number of integer bits then the number of fractional bits. / En stor del av dagens telekommunikation består av mobila trådlösa kortdistanstillämpningar där kanalens påverkan är okänd och förändras över tid. Signalen måste därför beskrivas statistiskt, vilket gör att den inte kan bestämmas exakt, utan måste estimeras. Eftersom telekomsystem arbetar i realtid består hårdvaran i mottagaren av t.ex. en DSP där de statistiska beräkningarna görs. En fixtals DSP har ett bestämt antal bitar och fast binärpunkt, vilket introducerar ett större kvantiseringsbrus jämfört med flyttalsoperationer som har en större noggrannhet. Tyngdpunkten på det här arbetet har varit att skapa ett bibliotek av funktioner för att hantera fixtal. En klass har skapats i MATLAB-kod som kan hantera de vanligaste aritmetiska operationerna och lösa minsta-kvadrat-problem. MATLAB:s Fixed-Point Toolbox skulle kunna användas för att lösa den här uppgiften men för att ha full kontroll över algoritmerna och fixtalshanteringen behövs ett eget bibliotek av funktioner som är oberoende av MATLAB:s Fixed-Point Toolbox. Slutsatsen av simuleringen gjord i detta examensarbete är att resultatet av minsta-kvadrat-metoden är mer beroende av antalet heltalsbitar än antalet binaler. / fixtal, telekommunikation, DSP, MATLAB, Fixed-Point Toolbox, minsta-kvadrat-lösning, flyttal, Householder QR faktorisering, saturering, kvantiseringsbrus
3

Analysis of Fix‐point Aspects for Wireless Infrastructure Systems

Grill, Andreas, Englund, Robin January 2009 (has links)
<p>A large amount of today’s telecommunication consists of mobile and short distance wireless applications, where the effect of the channel is unknown and changing over time, and thus needs to be described statistically. Therefore the received signal can not be accurately predicted and has to be estimated. Since telecom systems are implemented in real-time, the hardware in the receiver for estimating the sent signal can for example be based on a DSP where the statistic calculations are performed. A fixed-point DSP with a limited number of bits and a fixed binary point causes larger quantization errors compared to floating point operations with higher accuracy.</p><p>The focus on this thesis has been to build a library of functions for handling fixed-point data. A class that can handle the most common arithmetic operations and a least squares solver for fixed-point have been implemented in MATLAB code.</p><p>The MATLAB Fixed-Point Toolbox could have been used to solve this task, but in order to have full control of the algorithms and the fixed-point handling an independent library was created.</p><p>The conclusion of the simulation made in this thesis is that the least squares result are depending more on the number of integer bits then the number of fractional bits.</p> / <p>En stor del av dagens telekommunikation består av mobila trådlösa kortdistanstillämpningar där kanalens påverkan är okänd och förändras över tid. Signalen måste därför beskrivas statistiskt, vilket gör att den inte kan bestämmas exakt, utan måste estimeras. Eftersom telekomsystem arbetar i realtid består hårdvaran i mottagaren av t.ex. en DSP där de statistiska beräkningarna görs. En fixtals DSP har ett bestämt antal bitar och fast binärpunkt, vilket introducerar ett större kvantiseringsbrus jämfört med flyttalsoperationer som har en större noggrannhet.</p><p>Tyngdpunkten på det här arbetet har varit att skapa ett bibliotek av funktioner för att hantera fixtal. En klass har skapats i MATLAB-kod som kan hantera de vanligaste aritmetiska operationerna och lösa minsta-kvadrat-problem.</p><p>MATLAB:s Fixed-Point Toolbox skulle kunna användas för att lösa den här uppgiften men för att ha full kontroll över algoritmerna och fixtalshanteringen behövs ett eget bibliotek av funktioner som är oberoende av MATLAB:s Fixed-Point Toolbox.</p><p>Slutsatsen av simuleringen gjord i detta examensarbete är att resultatet av minsta-kvadrat-metoden är mer beroende av antalet heltalsbitar än antalet binaler.</p> / fixtal, telekommunikation, DSP, MATLAB, Fixed-Point Toolbox, minsta-kvadrat-lösning, flyttal, Householder QR faktorisering, saturering, kvantiseringsbrus

Page generated in 0.1011 seconds