• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Life cycles and secondary production of Ephemeroptera, Plecoptera, and Trichoptera (Insecta) under an extreme continental climate (River Kharaa, Mongolia)

Avlyush, Saulyegul 27 February 2014 (has links) (PDF)
Since the 1990s water quality monitoring projects using aquatic insects or macroinvertebrates as bioindication in Mongolia has mostly occurred in rivers drainage to the Arctic Ocean. They have been conducted to identify different anthropogentic stressors and impacts upon these running water ecosystems. However, there are still knowledge gaps and uncertainties concerning the research of these macroinvertebrates, in particular, a life cycle study of representative species are one such section of information missing. The specific aim for the study was to determine their life cycles and secondary production of selected species in the Kharaa River Basin, Mongolia, where these animals are exposed to harsh environment conditions. The main challenges for the research project were selecting the most suitable methods for use in the field sampling campaigns as well as establishing biomonitoring criteria for the target species under the extreme harsh climatic conditions. The research also sorts to address the pre-existing taxonomical identification problems. Consequently, a multi-habitat quantitative sampling method, and emergence traps type ‘Model week’ were selected. Five specific traits were chosen as selection criteria from the literature, where the life cycles of numerous species were investigated under comparable conditions to this study. Based on those five distinct criteria, a total of 18 species from EPT group (Ephemeroptera, Plecoptera, and Trichoptera) were selected for deeper analysis. This thesis provided the first quantitative results on the life cycle, production, growth rate and emergence of aquatic insects from Mongolia, to allow comparisons with studies in other regions using the same methods. However, it still needs more quantitative research of population dynamics for a wider range of species including fecundity, accurate development rates, mortality losses (e.g., due to predation), and food availability across environmental gradients of hydraulic conditions and substrate types. In conclusion, last not least it is essential to obtain knowledge especially about life cycle strategies of macroinvertebrates to identify the indicator-properties of single species and to predict re-colonisation potential of disturbed habitats and to evaluate the efficiency of management measures.
2

Life cycles and secondary production of Ephemeroptera, Plecoptera, and Trichoptera (Insecta) under an extreme continental climate (River Kharaa, Mongolia)

Avlyush, Saulyegul 12 December 2013 (has links)
Since the 1990s water quality monitoring projects using aquatic insects or macroinvertebrates as bioindication in Mongolia has mostly occurred in rivers drainage to the Arctic Ocean. They have been conducted to identify different anthropogentic stressors and impacts upon these running water ecosystems. However, there are still knowledge gaps and uncertainties concerning the research of these macroinvertebrates, in particular, a life cycle study of representative species are one such section of information missing. The specific aim for the study was to determine their life cycles and secondary production of selected species in the Kharaa River Basin, Mongolia, where these animals are exposed to harsh environment conditions. The main challenges for the research project were selecting the most suitable methods for use in the field sampling campaigns as well as establishing biomonitoring criteria for the target species under the extreme harsh climatic conditions. The research also sorts to address the pre-existing taxonomical identification problems. Consequently, a multi-habitat quantitative sampling method, and emergence traps type ‘Model week’ were selected. Five specific traits were chosen as selection criteria from the literature, where the life cycles of numerous species were investigated under comparable conditions to this study. Based on those five distinct criteria, a total of 18 species from EPT group (Ephemeroptera, Plecoptera, and Trichoptera) were selected for deeper analysis. This thesis provided the first quantitative results on the life cycle, production, growth rate and emergence of aquatic insects from Mongolia, to allow comparisons with studies in other regions using the same methods. However, it still needs more quantitative research of population dynamics for a wider range of species including fecundity, accurate development rates, mortality losses (e.g., due to predation), and food availability across environmental gradients of hydraulic conditions and substrate types. In conclusion, last not least it is essential to obtain knowledge especially about life cycle strategies of macroinvertebrates to identify the indicator-properties of single species and to predict re-colonisation potential of disturbed habitats and to evaluate the efficiency of management measures.
3

Gene expression profiling of two fish helminths throughout their complex life cycles. Are parasite’s life stages genetically decoupled?

Gramolini, Laura 15 July 2024 (has links)
Komplexe Lebenszyklen sind eine häufige, aber anspruchsvolle Lebensweise von Parasiten. Parasiten mit komplexen Lebenszyklen infizieren nacheinander mehrere Wirte und passen sich an verschiedene ökologische Nischen an. Werden in diesem Szenario dieselben Gene in allen Wirten einheitlich exprimiert? Die Hypothese der adaptiven Entkopplung besagt, dass verschiedene Stadien in einem komplexen Lebenszyklus genetisch und evolutionär unabhängig sind, was bedeutet, dass die Selektion auf Parasitenmerkmale in einem Wirt keine Auswirkungen auf Merkmale in anderen Wirten hat. Wir haben diese Hypothese anhand von zwei Parasitenarten getestet: dem Bandwurm Schistocephalus solidus und dem Fadenwurm Camallanus lacustris. Die Transkriptomsequenzierung wurde an Proben während ihrer komplexen Lebenszyklen durchgeführt. Die Genexpressionsanalyse wurde durchgeführt, um Gene zu identifizieren, die zwischen den Wirten, zwischen den Funktionsstadien und zwischen den Bedingungen unterschiedlich exprimiert werden. Darüber hinaus wurde mit einer Analyse der Anreicherung von Gensätzen untersucht, ob ähnliche biologische Funktionen von ähnlichen Genen in verschiedenen Stadien kodiert werden. Unsere Ergebnisse zeigen signifikante Unterschiede in der Genexpression zwischen den verschiedenen Stadien, wobei keine positive Korrelation zwischen Stadien mit derselben Aufgabe oder demselben Wirt beobachtet wurde. Gene, die in einem Stadium hochreguliert (oder herunterreguliert) werden, werden in anderen Stadien nicht in ähnlicher Weise exprimiert. Dies spricht für die Unabhängigkeit der einzelnen Stadien bei der Genexpression, die es den Parasiten ermöglicht, ihren Phänotyp als Reaktion auf unterschiedlichen Selektionsdruck zu modulieren. Diese Ergebnisse bestätigen die Hypothese der adaptiven Entkopplung bei parasitären Würmern und bieten Einblicke in den evolutionären Erfolg dieser Lebensweise. / Complex life cycles are a common but demanding lifestyle among parasites. Parasites with complex life cycles sequentially infect multiple hosts, adapting to various ecological niches using information encoded within a single genome. In this scenario, are the same genes expressed consistently across all hosts, as might occur when parasite stages perform similar functions? The adaptive decoupling hypothesis posits that different stages in a complex life cycle are genetically and evolutionarily independent, meaning selection on parasite traits in one host does not affect traits in other hosts. We tested this hypothesis using two species of parasites: the tapeworm Schistocephalus solidus and the nematode Camallanus lacustris, both of which have three-host life cycles. Transcriptome sequencing was performed on samples throughout their complex life cycles, generating transcriptomes from 10 stages of S. solidus and 7 stages of C. lacustris. Gene expression analysis was conducted to identify genes differentially expressed between hosts, between functional stages, and between conditions. Additionally, gene set enrichment analysis assessed whether similar biological functions are encoded by similar genes across stages. Our findings demonstrate significant differences in gene expression across stages, with no positive correlation observed between stages sharing the same task or host. The highest correlation occurred between stages sampled close in time. In conclusion, the lack of positive correlation between different life cycle stages indicates that genes up-regulated (or down-regulated) in one stage are not similarly expressed in other stages. This evidence supports the independence of each stage in gene expression, enabling parasites to modulate their phenotype in response to different selective pressures. These findings corroborate the adaptive decoupling hypothesis in parasitic worms with complex life cycles, offering insights into the evolutionary success of this lifestyle.

Page generated in 0.0535 seconds