• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of frequency on single leg hopping in typically developing preadolescents

Beerse, Matthew 10 May 2014 (has links)
Hopping is considered a mass-spring model movement in which the leg supports the center of mass. There is a preferred hopping frequency and hopping outside of that frequency is more difficult and requires more energy. Leg stiffness has been shown to be an important factor when hopping at different frequencies in young adult populations. The purpose of this study was to observe how a still-developing preadolescent population would modify leg stiffness while hopping at different frequencies and if they have similar motor control strategies compared to young adults. The subjects hopped on their dominant leg to the beat of a metronome at one of four frequency conditions based on their calculated preferred frequency, MP (preferred frequency), MM (20% increase), MF (40% increase), and MS (20% decrease). It was found that this population could change their hopping frequency and they achieved this by manipulating their leg stiffness. At the higher frequency conditions there was less movement of the toe and the center of mass in both the vertical and horizontal directions, including decreased hopping height, decreased COM displacement and COM range of motion. Preadolescents demonstrated an adult-like ability to increase leg stiffness and modulate movement of the toe and the COM while adapting to a range of hopping frequencies. This ability could translate into other mass-spring model movements such as running and jumping.
2

The influence of residual fatigue on lower limb stiffness during jump landing

Slater, Lindsay Victoria 22 December 2010 (has links)
Background: Anterior cruciate ligament (ACL) injuries have become commonplace among female athletes in today’s society. With more than 70% of injuries resulting from noncontact mechanisms such as jump landing, the relationship between fatigue and altered movements patterns has become an important topic of research. Purpose: The main purpose of this study was to investigate the influence of residual fatigue on lower extremity kinematics and vertical leg stiffness at landing as experienced by female athletes. Method: The participants in this study were 12 NCAA female intercollegiate soccer players. Participants completed five single-leg drop jumps on their dominant leg every day for 4 days. The first day was completed without intervention to obtain pre-fatigue data and drop jumps on days two through four were completed after a fatigue protocol. Results: A repeated measures MANOVA did not reveal significant differences in post-fatigue peak knee flexion angle, vertical ground reaction forces, or vertical leg stiffness. Despite lack of statistical significance, vertical leg stiffness was increased during post-fatigue testing when compared to pre-fatigue values. Implications: The increased vertical leg stiffness may indicate altered landing techniques in post-fatigue states. If fatigue results in compromised movement patterns, it may explain the increased number of ACL injuries during the end of soccer matches. Suggestions for Future Research: Future research with a larger sample size should include post-fatigue dominant and nondominant leg comparison due to previous conflicting findings regarding which limb is most often injured. Future researchers should also quantify the magnitude of fatigue induced by the fatiguing protocol to document the strength of the independent variable. / text

Page generated in 0.0642 seconds