Spelling suggestions: "subject:"les"" "subject:"less""
61 |
An examination of human corneal sensitivity by non-invasive methodsMurphy, Paul J. January 1996 (has links)
The aim of this thesis was to design, develop and evaluate a Non-Contact Corneal Aesthesiometer (NCCA), using a controlled pulse of air, of a pre-determined pressure. First, the system design and alterations are described, then in a series of model experiments, the standardisation and characteristics of the air-pulse were examined. These studies revealed that the NCCA could produce a repeatable stimulus of known volume and rate of air-flow. Furthermore, the air-flow exiting the stimulus air jet was of a laminar shape, with minimal dispersion. The control of the air-flow dispersion was further enhanced by using a 0.5mm diameter air jet and a working distance of lcm. Varying the stimulus duration was not found to influence these qualities of the air-pulse. The air-pulse stimulus was shown to possess the ability to produce corneal nerve stimulation either by surface deformation, temperature change, or both. Using thermal imaging equipment, a temperature drop in the ocular tear film was demonstrated that was localised, and limited to the cornea. A second series of experiments investigated the ability of the NCCA to measure a corneal sensitivity threshold. These studies indicated that a forced-choice, doublestaircase, Method of Limits experimental technique produced an accurate threshold, with low variability in the results, over a minimum time period. Further studies showed that this threshold measurement was repeatable to within 0.1 mbars. A database of typical normal sensitivity thresholds, under a number of physiological variables - corneal location, gender, age and iris colour, was developed. The results from these studies compared well qualitatively with those using invasive stimuli. A third series of experiments examined the ability of the NCCA to assess corneal nerve function when it was under a number of external influences. The first situation was that of anaesthesia,p roduced by 0.4% benoxinate hydrochloride. Non-contact corneal sensitivity loss and recovery were shown to return to normal levels 60mins after instillation of the anaesthetic. The second situation was that of long-term contact lens wear (i.e. longer than three years). Non-contact sensitivity was shown to be reduced with both soft and gas-permeable lens wear, although the extent of loss did not differ between them, nor was it influenced by the length of wear. Thirdly,corneal sensitivity loss and recovery was assessed in subjects following excimer laser photorefractive keratectomy (PRK). Three laser trials were completed: a longitudinal myopic study, a transverse myopic study, and a longitudinal hyperopic study. The results indicated that non-contact corneal sensitivity loss/recovery was not related to the attempted depth of ablation, and that sensitivity had still not returned to normal levels one year post-op.
|
62 |
Integrin alphα5/fibronectin1 and focal adhesion kinase are required for lens fiber morphogenesis in zebrafishHayes, Julie Marie 17 December 2010 (has links)
Fibronectin (fn) and integrin α5 (itgα5) are both key players in cell adhesion and intracellar signaling, however the specific in vivo role of these proteins has never been analyzed in the vertebrate lens.
The results presented here indicate that Fn1 and Itgα5 proteins are essential for the proper development of the lens. The loss of Fn1 protein in the zebrafish embryo results in distinct adhesion defects, defects in lens fiber morphogenesis, and cataracts. These results were phenocopied in zebrafish itga5 mutants, thereby indicating an essential role for Fn1 and Itgα5 during lens development. Furthermore, embryos with reduced levels of ptk2.1 (focal adhesion kinase – FAK) also phenocopied the defective fn1 and itgα5 lens, suggesting that FAK is a major player in the intracellular signaling mediated by Fn1/Itgα5 interactions in the lens. / text
|
63 |
Metamaterial Lens DesignShepard III, Ralph Hamilton January 2009 (has links)
Developments in nanotechnology and material science have produced optical materials with astonishing properties. Theory and experimentation have demonstrated that, among other properties, the law of refraction is reversed at an interface between a naturally occurring material and these so-called metamaterials. As the technology advances metamaterials have the potential to vastly impact the field of optical science.In this study we provide a foundation for future work in the area of geometric optics and lens design with metamaterials. The concept of negative refraction is extended to derive a comprehensive set of first-order imaging principles as well as an exhaustive aberration theory to 4th order. Results demonstrate congruence with the classical theory; however, negative refraction introduces a host of novel properties. In terms of aberration theory, metamaterials present the lens designer with increased flexibility. A singlet can be bent to produce either positive or negative spherical aberration (regardless of its focal length), its contribution to coma can become independent of its conjugate factor, and its field curvature takes on the opposite sign of its focal power. This is shown to be advantageous in some designs such as a finite conjugate relay lens; however, in a wider field of view landscape lens we demonstrate a metamaterial's aberration properties may be detrimental.This study presents the first comprehensive investigation of metamaterial lenses using industry standard lens design software. A formal design study evaluates the performance of doublet and triplet lenses operating at F/5 with a 100 mm focal length, a 20° half field of view, and specific geometric constraints. Computer aided optimization and performance evaluation provide experimental controls to remove designer-induced bias from the results. Positive-index lenses provide benchmarks for comparison to metamaterial systems subjected to identical design constraints. We find that idiosyncrasies in a metamaterial lens' aberration content can be exploited to produce imaging systems that are superior to their conventional counterparts. However, in some circumstances the reduced low-order aberration content in a metamaterial lens reduces the effectiveness of aberration balancing and stop shifting. Through a series of design experiments the relative advantages and challenges of using metamaterials in lens design are revealed.
|
64 |
A STUDY ON HIGH NA AND EVANESCENT IMAGING WITH POLARIZED ILLUMINATIONYang, Seung-Hune January 2009 (has links)
Simulation techniques are developed for high NA polarized microscopy with Babinet's principle, partial coherence and vector diffraction for non-periodic geometries. A mathematical model for the Babinet approach is developed and interpreted. Simulation results of the Babinet's principle approach are compared with those of Rigorous Coupled Wave Theory (RCWT) for periodic structures to investigate the accuracy of this approach and its limitations.A microscope system using a special solid immersion lens (SIL) is introduced to image Blu-Ray (BD) optical disc samples without removing the protective cover layer.Aberration caused by the cover layer is minimized with a truncated SIL. Sub-surface imaging simulation is achieved by RCWT, partial coherence, vector diffraction and Babinet's Principle. Simulated results are compared with experimental images and atomic force microscopy (AFM) measurement.A technique for obtaining native and induced using a significant amount of evanescent energy is described for a solid immersion lens (SIL) microscope.Characteristics of native and induced polarization images for different object structures and materials are studied in detail. Experiments are conducted with a NA = 1.48 at wavelength550nm microscope. Near-field images are simulated and analyzed with an RCWT approach. Contrast curve versus object spatial frequency calculations are compared with experimental measurements. Dependencies of contrast versus source polarization angles and air gap for native and induced polarization image profiles are evaluated. By using the relationship between induced polarization and topographical structure, an induced polarization image of an alternating phase shift mask (PSM) is converted into a topographical image, which shows very good agreement with AFM measurement. Images of other material structures include a dielectric grating, chrome-on-glass grating, silicon CPU structure, BD-R and BD-ROM.
|
65 |
The effect of UV-laser radiation on lenses and lens proteinsLi, Dongyun 08 1900 (has links)
No description available.
|
66 |
Resonance and non-resonance Raman studies of biological moleculesChang, Robert Cheng Chi 08 1900 (has links)
No description available.
|
67 |
Changes in contrast sensitivity during soft contact lens wearGrey, C. P. January 1986 (has links)
No description available.
|
68 |
Modeling In Vitro Lipid Deposition on Silicone Hydrogel and Conventional Hydrogel Contact Lens MaterialsLorentz, Holly Irene January 2011 (has links)
Purpose: To examine the variables that influence lipid deposition on conventional and silicone hydrogel contact lens materials and to build a physiologically relevant in vitro model of lipid deposition on contact lenses.
Methods: Lipid deposition on contact lens materials can lead to discomfort and vision difficulty for lens wearers. Using a variety of radiochemical experiments and two model lipids (cholesterol and phosphatidylcholine), a number of clinically significant parameters that may influence lipid deposition were examined.
• The optimization and characterization of a novel artificial tear solution (ATS) was examined (Chapter 3)
• Optimization of an extraction system to remove deposited cholesterol and phosphatidylcholine from various contact lens materials (Chapter 4)
• The influence of different tear film components on lipid deposition was researched (Chapter 5)
• The efficiency of hydrogen peroxide disinfecting solutions to remove deposited lipid from contact lenses was investigated (Chapter 6)
• The effect of intermittent air exposure on lipid deposition was examined through the use of a custom built “model blink cell” (Chapter 7)
Results: A novel complex ATS designed for in-vial incubations of contact lens materials was developed. This solution was stable and did not adversely affect the physical parameters of the contact lenses incubated within it. An efficient extraction protocol for deposited cholesterol and phosphatidylcholine was optimized based on chloroform and methanol with the addition of water and acetic acid for phosphatidylcholine extraction. Overall, cholesterol and phosphatidylcholine deposition is cumulative over time and found to deposit in greater masses on silicone-containing hydrogels. Cholesterol and phosphatidylcholine deposition is influenced by the composition of the incubation medium and air exposure which occurs during the inter-blink period. Hydrogen peroxide disinfecting solutions were able to remove only marginal amounts of lipid from the contact lenses, with the surfactant containing solution removing more.
Conclusion: This thesis has provided hitherto unavailable information on the way in which lipid interacts with conventional and silicone hydrogel contact lens materials and the in vitro model built here can be utilized in various ways in the future to assess other aspects and variables of lipid and protein deposition on a variety of biomaterials.
|
69 |
Lens calcium homeostasis and selenite cataract /Wang, Zaiqi, January 1992 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1992. / Vita. Abstract. Includes bibliographical references (leaves 110-119). Also available via the Internet.
|
70 |
Exploring the role of fibroblast growth factor (FGF) signaling in mouse lens fiber differentiation through tissue-specific disruption of FGF receptor gene familyZhao, Haotian, January 2004 (has links)
Thesis (Ph. D.)--Ohio State University, 2004. / Title from first page of PDF file. Document formatted into pages; contains xii, 203 p.; also includes graphics (some col.) Includes bibliographical references (p. 179-203). Available online via OhioLINK's ETD Center
|
Page generated in 0.059 seconds