• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predictions of Effective Models in Neutrino Physics

Bergström, Johannes January 2011 (has links)
Experiments on neutrino oscillations have confirmed that neutrinos have small, but non-zero masses, and that the interacting neutrino states do not have definite masses, but are mixtures of such states.The seesaw models make up a group of popular models describing the small neutrino masses and the corresponding mixing.In these models, new, heavy fields are introduced and the neutrino masses are suppressed by the ratio between the electroweak scale and the large masses of the new fields. Usually, the new fields introduced have masses far above the electroweak scale, outside the reach of any foreseeable experiments, making these versions of seesaw models essentially untestable. However, there are also so-called low-scale seesaw models, where the new particles have masses above the electroweak scale, but within the reach of future experiments, such as the LHC.In quantum field theories, quantum corrections generally introduce an energy-scale dependence on all their parameters, described by the renormalization group equations. In this thesis, the energy-scale dependence of the neutrino parameters in two low-scale seesaw models, the low-scale type I and inverse seesaw models, are considered. Also, the question of whether the neutrinos are Majorana particles, \ie , their own antiparticles, has not been decided experimentally. Future experiments on neutrinoless double beta decay could confirm the Majorana nature of neutrinos. However, there could also be additional contributions to the decay, which are not directly related to neutrino masses. We have investigated the possible future bounds on the strength of such additional contributions to neutrinoless double beta decay, depending on the outcome of ongoing and planned experiments related to neutrino masses. / QC 20110812
2

Models in Neutrino Physics : Numerical and Statistical Studies

Bergström, Johannes January 2013 (has links)
The standard model of particle physics can excellently describe the vast majorityof data of particle physics experiments. However, in its simplest form, it cannot account for the fact that the neutrinos are massive particles and lepton flavorsmixed, as required by the observation of neutrino oscillations. Hence, the standardmodel must be extended in order to account for these observations, opening up thepossibility to explore new and interesting physical phenomena. There are numerous models proposed to accommodate massive neutrinos. Thesimplest of these are able to describe the observations using only a small numberof effective parameters. Furthermore, neutrinos are the only known existing particleswhich have the potential of being their own antiparticles, a possibility that isactively being investigated through experiments on neutrinoless double beta decay.In this thesis, we analyse these simple models using Bayesian inference and constraintsfrom neutrino-related experiments, and we also investigate the potential offuture experiments on neutrinoless double beta decay to probe other kinds of newphysics. In addition, more elaborate theoretical models of neutrino masses have beenproposed, with the seesaw models being a particularly popular group of models inwhich new heavy particles generate neutrino masses. We study low-scale seesawmodels, in particular the resulting energy-scale dependence of the neutrino parameters,which incorporate new particles with masses within the reach of current andfuture experiments, such as the LHC. / Standardmodellen för partikelfysik beskriver den stora majoriteten data från partikelfysikexperimentutmärkt. Den kan emellertid inte i sin enklaste form beskrivadet faktum att neutriner är massiva partiklar och leptonsmakerna är blandande,vilket krävs enligt observationerna av neutrinooscillationer. Därför måste standardmodellenutökas för att ta hänsyn till detta, vilket öppnar upp möjligheten att utforska nya och intressanta fysikaliska fenomen. Det finns många föreslagna modeller för massiva neutriner. De enklaste av dessakan beskriva observationerna med endast ett fåtal effektiva parametrar. Dessutom är neutriner de enda kända befintliga partiklar som har potentialen att vara sinaegna antipartiklar, en möjlighet som aktivt undersöks genom experiment på neutrinolöst dubbelt betasönderfall. I denna avhandling analyserar vi dessa enkla modellermed Bayesisk inferens och begränsningar från neutrinorelaterade experiment och undersöker även potentialen för framtida experiment på neutrinolöst dubbelt betasönderfall att bergänsa andra typer av ny fysik. Även mer avancerade teoretiska modeller för neutrinomassor har föreslagits, med seesawmodeller som en särskilt populär grupp av modeller där nya tunga partiklargenererar neutrinomassor. Vi studerar seesawmodeller vid låga energier, i synnerhetneutrinoparametrarnas resulterande energiberoende, vilka inkluderar nya partiklarmed massor inom räckh°all för nuvarande och framtida experiment såsom LHC. / <p>QC 20130830</p>

Page generated in 0.0798 seconds