• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 63
  • 9
  • 8
  • 8
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 213
  • 47
  • 43
  • 37
  • 27
  • 24
  • 24
  • 21
  • 20
  • 20
  • 17
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Regulation and function of hyaluronan binding by CD44 in the immune system

Ruffell, Brian 11 1900 (has links)
The proteoglycan CD44 is a widely expressed cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan, and is involved in processes ranging from metastasis to wound healing. In the immune system, leukocyte activation induces hyaluronan binding through changes in CD44 post-translational modification, but these changes have not been well characterized. Here I identify chondroitin sulfate addition to CD44 as a negative regulator of hyaluronan binding. Chondroitin sulfate addition was analyzed by sulfate incorporation and Western blotting and determined to occur at serine 180 in human CD44 using site-directed mutagenesis. Mutation of serine 180 increased hyaluronan binding by both a CD44-immunoglobulin fusion protein expressed in HEK293 cells, and full-length CD44 expressed in murine L fibroblast cells. In bone marrow-derived macrophages, hyaluronan binding induced by the inflammatory cytokines tumor necrosis factor-α and interferon-γ corresponded with reduced chondroitin sulfate addition to CD44. Retroviral infection of CD44⁻/⁻ macrophages with mouse CD44 containing a mutation at serine 183, equivalent to serine 180 in human CD44, resulted in hyaluronan binding that was constitutively high and no longer enhanced by stimulation. These results demonstrate that hyaluronan binding by CD44 is regulated by chondroitin sulfate addition in macrophages. A functional consequence of altered chondroitin sulfate addition and increased hyaluronan binding was observed in Jurkat T cells, which became more susceptible to activation-induced cell death when transfected with mutant CD44. The extent of cell death was dependent upon both the hyaluronan binding ability of CD44 and the size of hyaluronan itself, with high molecular mass hyaluronan having a greater effect than intermediate or low molecular mass hyaluronan. The addition of hyaluronan to pre-activated Jurkat T cells induced rapid cell death independently of Fas and caspase activation, identifying a unique Fas-independent mechanism for inducing cell death in activated cells. Results were comparable in splenic T cells, where high hyaluronan binding correlated with increased phosphatidylserine exposure, and hyaluronan-dependent cell death occurred in a population of restimulated cells in the absence of Fas-dependent cell death. Together these results reveal a novel mechanism for regulating hyaluronan binding and demonstrate that altered chondroitin sulfate addition can affect CD44 function.
32

Exploration of methods for sequence based HLA typing and application to patients with hair dye allergy

Garcia-Batres, Carlos R. Unknown Date
No description available.
33

Endothelial activation and inflammation in the tumor microenvironment

Huang, Hua January 2015 (has links)
Tumors are composed not only of malignant cells, but also of various types of normal cells, including vascular cells and infiltrating immune cells, which drive tumor development and progression. The tumor vasculature is abnormal and dysfunctional due to sustained tumor angiogenesis driven by high levels of pro-angiogenic factors. Proteins differentially expressed in tumor vessels affect vascular function and the tumor microenvironment and may serve as targets for therapy. The tumor is also a site of sustained chronic inflammation. The recruitment and activation of inflammatory cells significantly influence tumor progression and regression. Targeting molecules regulating tumor angiogenesis and inflammation in the tumor microenvironment is therefore a promising strategy for the treatment of cancer. This thesis is aiming to understand and investigate the molecular regulation of these two processes in tumors. αB-crystallin is a heat shock protein previously proposed as a target for cancer therapy due to its role in increasing survival of tumor cells and enhancing tumor angiogenesis. In this thesis, we demonstrate a novel role of αB-crystallin in limiting expansion of CD11b+Gr1+ immature myeloid cells in pathological conditions, including tumor development. In addition, we show that αB-crystallin regulates leukocyte recruitment by promoting expression of adhesion molecules ICAM-1, VCAM-1 and E-selectin during TNF-α-induced endothelial activation. Therefore, targeting of αB-crystallin may influence tumor inflammation by regulating immature myeloid cell expansion and leukocyte recruitment. Abnormal, dysfunctional vessels are characteristic of glioblastomas, which are aggressive malignant brain tumors. We have identified the orphan G-protein coupled receptor ELTD1 as highly expressed in glioblastoma vessel and investigated its role in tumor angiogenesis. Interestingly, deficiency of ELTD1 was associated with increased growth of orthotopic GL261 glioma and T241 fibrosarcoma, but did not affect vessel density in any model. Further investigation is warranted to evaluate whether ELTD1 serves a suitable vascular target for glioblastoma treatment. Anti-angiogenic drugs targeting VEGF signaling is widely used in the clinic for various types of cancer. However, the influences of anti-angiogenic treatment on tumor inflammation have not been thoroughly investigated. We demonstrate that VEGF inhibits TNF-α-induced endothelial activation by repressing NF-κB activation and expression of chemokines involved in T-cell recruitment. Sunitinib, a small molecule kinase inhibitor targeting VEGF/VEGFR2 signaling increased expression of chemokines CXCL10, CXCL11, and enhanced T-lymphocyte infiltration into tumors. Our study suggests that anti-angiogenic therapy may improve immunotherapy by enhancing endothelial activation and facilitating immune cell infiltration into tumors.
34

Leukocyte Structural Adaptations in Response to Hemodynamic Forces: Tension Transmitted Through VLA-4 Activates Upstream Rap1, PI3K, and Rac-Dependent Actin Polymerization

Rullo, Jacob 19 December 2012 (has links)
During inflammation, leukocytes modulate α4β1(VLA-4) integrin avidity in order to rapidly stabilize nascent adhesive contacts to VCAM-1-expressing endothelial cells and resist detachment forces imparted by the flowing blood. Linkage to the actin cytoskeleton is critical for integrin function, yet the exact role of the actin cytoskeleton in leukocyte adhesion stabilization under conditions of fluid flow remains poorly understood. We modeled leukocyte (U937 cell, mouse lymphocyte and human monocyte) arrest and adhesion stabilization through the use of a parallel plate flow chamber and visualized cells by phase contrast or fluorescent confocal microscopy. Live cell imaging with Lifeact-transfected U937 cells revealed that mechanical forces imparted by fluid flow induced formation of upstream tension-bearing anchors attached to the VCAM-1-coated surface. Scanning electron microscopy confirmed that flow-induced mechanical force culminates in the formation of structures that anchor monocyte adhesion. These structures are critical for adhesion stabilization, since disruption of actin polymerization dramatically inhibited VLA-4-dependent resistance to detachment, but did not affect VLA-4 expression, affinity modulation, and clustering or constitutive linkage to F-actin. Transfection of dominant-negative constructs and inhibition of kinase function or expression revealed key signaling steps required for upstream actin polymerization and adhesion stabilization. Rap1 was shown to be critical for resistance to flow-induced detachment and accumulated in its GTP form at the sites of anchor formation. A key mediator of force-induced Rac activation and actin polymerization is PI3K. Live cell imaging revealed accumulation of PIP3 within tension-bearing anchors and blockade of PI3K or deficiency of PI3Kγ isoform reproduced the adhesion defect produced by inhibition of actin polymerization. Thus, rapid signaling and structural adaptations enable leukocytes to stabilize adhesion and resist detachment forces; these included activation of Rap1, phosphoinositide 3-kinase γ-isoform and Rac, but not Cdc42.
35

Regulation and function of hyaluronan binding by CD44 in the immune system

Ruffell, Brian 11 1900 (has links)
The proteoglycan CD44 is a widely expressed cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan, and is involved in processes ranging from metastasis to wound healing. In the immune system, leukocyte activation induces hyaluronan binding through changes in CD44 post-translational modification, but these changes have not been well characterized. Here I identify chondroitin sulfate addition to CD44 as a negative regulator of hyaluronan binding. Chondroitin sulfate addition was analyzed by sulfate incorporation and Western blotting and determined to occur at serine 180 in human CD44 using site-directed mutagenesis. Mutation of serine 180 increased hyaluronan binding by both a CD44-immunoglobulin fusion protein expressed in HEK293 cells, and full-length CD44 expressed in murine L fibroblast cells. In bone marrow-derived macrophages, hyaluronan binding induced by the inflammatory cytokines tumor necrosis factor-α and interferon-γ corresponded with reduced chondroitin sulfate addition to CD44. Retroviral infection of CD44⁻/⁻ macrophages with mouse CD44 containing a mutation at serine 183, equivalent to serine 180 in human CD44, resulted in hyaluronan binding that was constitutively high and no longer enhanced by stimulation. These results demonstrate that hyaluronan binding by CD44 is regulated by chondroitin sulfate addition in macrophages. A functional consequence of altered chondroitin sulfate addition and increased hyaluronan binding was observed in Jurkat T cells, which became more susceptible to activation-induced cell death when transfected with mutant CD44. The extent of cell death was dependent upon both the hyaluronan binding ability of CD44 and the size of hyaluronan itself, with high molecular mass hyaluronan having a greater effect than intermediate or low molecular mass hyaluronan. The addition of hyaluronan to pre-activated Jurkat T cells induced rapid cell death independently of Fas and caspase activation, identifying a unique Fas-independent mechanism for inducing cell death in activated cells. Results were comparable in splenic T cells, where high hyaluronan binding correlated with increased phosphatidylserine exposure, and hyaluronan-dependent cell death occurred in a population of restimulated cells in the absence of Fas-dependent cell death. Together these results reveal a novel mechanism for regulating hyaluronan binding and demonstrate that altered chondroitin sulfate addition can affect CD44 function.
36

Persistent Virus Infection and T Cell Receptor Selection

Katherine Kay Wynn Unknown Date (has links)
Human cytomegalovirus (HCMV) is a β-herpesvirus that establishes a life-long presence in the infected host. The adaptive immune response is indispensable in controlling HCMV infection. Consequently, healthy individuals show no or mild symptoms following primary infection. In contrast, immunocompromised individuals who develop primary infection or recrudescence of HCMV can experience severe morbidity, and sometimes mortality. HCMV-specific T cell populations undergo changes in the architecture of their T cell receptor (TCR) repertoire following each episode of viral reactivation. A diverse TCR repertoire is thought to be required to provide the most efficient protection against virus infection. Perturbation to this repertoire, as can occur in immunocompromised individuals following transplantation, can lead to an increase risk of developing virus-associated clinical disease. Therefore, the study of factors influencing TCR selection is critically important in both healthy and immunocompromised individuals. To further understand the factors governing TCR selection in a persistent virus infection, the current thesis examined this process in different settings. CD8+ T cell responses to persistent viral infections are characterised by the accumulation of T cells exhibiting an oligoclonal T cell repertoire, with a parallel reduction in the naïve T cell pool. However, the precise mechanism for this phenomenon remains elusive. Here, we showed that HCMV-specific CD8+ T cells recognising distinct epitopes from the pp65 protein and restricted through an identical HLA class I allele (HLA B*3508) exhibited either a highly conserved public T cell repertoire, or a private, diverse T cell response, which was uniquely altered in each donor following in vitro antigen exposure. Selection of a public TCR was co-incident with an atypical peptide-MHC (pMHC) structure, whereby the epitope adopted a helical conformation that bulged from the peptide-binding groove, whilst a diverse TCR profile was observed in response to the epitope that formed a flatter, more ‘featureless’ landscape. Clonotypes with biased TCR usage demonstrated more efficient recognition of virus-infected cells, a greater CD8 dependency, and were more terminally differentiated in their phenotype when compared to the T cells expressing diverse TCR. These findings provide new insights into our understanding of how the biology of antigen presentation, in addition to the structural features of the pMHC, might shape the T cell phenotype and its corresponding repertoire architecture. Next, the role of HCMV in shaping the global and antigen-specific TCR repertoire in healthy donors was examined. First, exposure to HCMV led to an inflation of terminally differentiated CD57-expressing T cells. This effect was not seen in HCMV seronegative individuals who showed evidence of exposure to another persistent herpesvirus, Epstein-Barr virus (EBV). More importantly, these terminally differentiated CD8+ T cells in HCMV-exposed individuals displayed a highly skewed architecture of their peripheral blood T cell repertoire, with large monoclonal/oligoclonal expansions. However, ex vivo analyses of HCMV-specific T cells revealed a heterogeneous pattern of CD57 expression that showed no correlation to the antigenic source of its cognate epitope. Based on these observations, we proposed that exposure to HCMV drives the differentiation of not only the global T cell population, but select HCMV-specific T cell populations as well, and that expression of CD57 by these cells was co-incident with an oligoclonal T cell repertoire. Finally, the TCR repertoire was examined in a cohort of solid organ transplant (SOT) recipients, where primary infection or recrudescence of latent virus infection can be manifested either as asymptomatic or symptomatic disease. We examined 18 SOT recipients, and observed that symptomatic HCMV or EBV infection or recrudescence following solid organ transplantation was co-incident with a dramatic skewing of the TCR repertoire, with expansions of monoclonal/oligoclonal clonotypes. As the clinical symptoms resolved, the peripheral blood repertoire reverted to a more diverse distribution. In contrast, SOT recipients with asymptomatic or no HCMV/EBV infection or recrudescence showed minimal or no skewing of the TCR repertoire, and maintained TCR repertoire diversity. Interestingly, this disparate repertoire showed no correlation with levels of viral load in the peripheral blood. More importantly, we showed that large monoclonal/oligoclonal repertoire expansions was linked to the loss of antigen-specific T cell function observed in SOT patients undergoing symptomatic viral infection or recrudescence, while SOT recipients who maintained peripheral blood TCR repertoire diversity and functional antigen-specific T cell responses could resist clinical symptomatic disease in spite of high levels of viral load. Therefore, the work presented in this thesis provides additional evidence on the factors governing TCR selection in HCMV-exposed healthy individuals, as well as the consequences that perturbation to the TCR repertoire has on the functionality of the T cell compartment in immunocompromised individuals.
37

Regulation and function of the leukocyte immunoglobulin-like receptors (LILRS) in rheumatoid arthritis

Huynh, Owen Anthony, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
The Leukocyte Immunoglobulin-like Receptors (LILRs) are a family of receptors that is broadly expressed on all leukocytes and have the ability to regulate their function. A substantial amount of evidence suggests that LILRs may be involved in immune homeostasis but also immune dysregulation. We therefore studied the role of LILRs in relation to the autoimmune disease, rheumatoid arthritis (RA). RA is a chronic and systemic inflammatory disease involving inflammation of the joints affecting the synovial membrane, cartilage and bone. Much of the tissue damage is a result of an inappropriate immune response within the joint space caused by the unwarranted activation of leukocytes. Here were report that LILRA2 (an activating receptor) that has been previously shown to be highly expressed in the rheumatoid synovium, induces the production of pro-inflammatory cytokines TNF-α, IL-1, IL-6, IFN-γ and IL-10 in primary monocytes. These cytokines are known to have an important role in the pathogenesis of RA indicating a pathway by which LILRA2 exacerbates RA. Co-ligation of LILRB4 (an inhibitory receptor) with LILRA2 abolishes cytokine production suggesting that LILRB4 is able to suppress the function of LILRA2. Expression of both LILRA2 and LILRB4 are regulated by inflammatory cytokines and LPS, indicative of a feedback mechanism. There is also cross-talk between LILRs and TLR4 as co-stimulation with LPS and either LILRA2 or LILRB4 inhibits cytokine production. A differential expression of LILRs has also been identified on lymphocytes of patients with RA whereby an increase of LILRA1 (activating) and LILRB1 (inhibitory) expressing circulating lymphocytes is present in RA patients when compared to healthy control subjects. From these studies, we propose that LILRs have a functional role in RA by regulating local and systemic inflammation. The presence of LILRA2 in the RA joint is detrimental since its potent ability to induce inflammatory cytokines, particularly TNF-α, can initiate leukocyte recruitment and activation of proteases. Along with TLR4, LILRA2 and LILRB4 have the potential to moderate the innate immune system via regulation of cytokine production. Furthermore, suppression of LILRA2 function may serve as a therapeutic tool in many inflammatory diseases.
38

Polimorfismos do gene HLA-DRB1 associados à resposta imune humoral contra o antígeno-1 de membrana apical das variantes de Plasmodium vivax (VK210, VK247 e P. vivax-like)

Herter, Daniela Reis da Costa [UNESP] 10 December 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:20Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-12-10Bitstream added on 2014-06-13T20:56:15Z : No. of bitstreams: 1 herter_drc_me_sjrp.pdf: 754038 bytes, checksum: 1546a0d9c3ae0583356f9052fe2fb9e8 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O presente estudo avaliou a relação entre a resposta de anticorpos contra AMA-1 das variantes de P. vivax (VK210, VK247 e P. vivax-like) e os polimorfismos do gene HLA-DRB1 em populações endêmicas da Amazônia brasileira, para melhor entendimento dos mecanismos que modulam a resposta imune contra a malária. A resposta sorológica foi analisada em indivíduos maláricos e não-maláricos por testes de ELISA para AMA-1. Um subgrupo de amostras foi utilizado para genotipagem do gene HLA-DRB1 por PCR-SSP. Foram detectados 13 alelos diferentes do gene HLA- DRB1, sendo o alelo HLA-DRB1*04 o prevalente na população estudada. Foi detectada uma alta freqüência de respondedores para o antígeno AMA-1, com níveis crescentes de acordo com exposição prévia a malária. Nenhuma associação significativa foi observada entre as variantes da CSP do P.vivax e a resposta a AMA- 1, bem como aos polimorfismos do HLA-DRB1. O HLA-DRB1 apresenta uma distribuição heterogênea na população estudada, evidenciando uma contribuição característica de descendência ameríndia. A resposta de anticorpos contra o antígeno AMA-1 parece não influenciar na epidemiologia das variantes da CSP de P. vivax. Os polimorfismos do gene HLA-DRB1 não influenciam no desenvolvimento de reposta de anticorpos contra o AMA-1 na malária vivax na Amazônia brasileira / To better understand the mechanisms of the immune response modulation against malaria, this study evaluated the relationship among the antibody response to AMA-1 and variants of the circumsporozoite protein (CSP) of the P. vivax (VK210, VK247 and P. vivax-like) and the polymorphisms of HLA-DRB1 gene in populations endemic from the Brazilian Amazon. The antibody response was analyzed in malarial and non-malarial individuals by AMA-1ELISA test. A subset of samples was genotyping of HLA-DRB1 by PCR-SSP. We detected 13 different alleles of HLA-DRB gene, where the HLA-DRB1*04 was the commonest allele. A high frequency of responders to the antigen AMA-1 was detected, with increasing levels according to previous malaria experience. No significant association was observed among the response to P. vivax AMA-1 and, the variants of the CSP and the polymorphisms of HLA-DRB gene. The HLA-DRB1 has a heterogeneous distribution in the population studied, showing an effective contribution of Amerindian groups. The antibody response against the antigen AMA-1 does not influence the epidemiology of variants of the CSP of P. vivax. The polymorphisms of HLA-DRB1 gene do not influence the development of antibody response against AMA-1 in vivax malaria around the Brazilian Amazon region
39

Polimorfismos do gene HLA-DRB1 associados à resposta imune humoral contra o antígeno-1 de membrana apical das variantes de Plasmodium vivax (VK210, VK247 e P. vivax-like) /

Herter, Daniela Reis da Costa. January 2009 (has links)
Orientador: Ricardo Luiz Dantas Machado / Banca: Paula Rahal / Banca: Carlos Eugênio Cavasini / Resumo: O presente estudo avaliou a relação entre a resposta de anticorpos contra AMA-1 das variantes de P. vivax (VK210, VK247 e P. vivax-like) e os polimorfismos do gene HLA-DRB1 em populações endêmicas da Amazônia brasileira, para melhor entendimento dos mecanismos que modulam a resposta imune contra a malária. A resposta sorológica foi analisada em indivíduos maláricos e não-maláricos por testes de ELISA para AMA-1. Um subgrupo de amostras foi utilizado para genotipagem do gene HLA-DRB1 por PCR-SSP. Foram detectados 13 alelos diferentes do gene HLA- DRB1, sendo o alelo HLA-DRB1*04 o prevalente na população estudada. Foi detectada uma alta freqüência de respondedores para o antígeno AMA-1, com níveis crescentes de acordo com exposição prévia a malária. Nenhuma associação significativa foi observada entre as variantes da CSP do P.vivax e a resposta a AMA- 1, bem como aos polimorfismos do HLA-DRB1. O HLA-DRB1 apresenta uma distribuição heterogênea na população estudada, evidenciando uma contribuição característica de descendência ameríndia. A resposta de anticorpos contra o antígeno AMA-1 parece não influenciar na epidemiologia das variantes da CSP de P. vivax. Os polimorfismos do gene HLA-DRB1 não influenciam no desenvolvimento de reposta de anticorpos contra o AMA-1 na malária vivax na Amazônia brasileira / Abstract: To better understand the mechanisms of the immune response modulation against malaria, this study evaluated the relationship among the antibody response to AMA-1 and variants of the circumsporozoite protein (CSP) of the P. vivax (VK210, VK247 and P. vivax-like) and the polymorphisms of HLA-DRB1 gene in populations endemic from the Brazilian Amazon. The antibody response was analyzed in malarial and non-malarial individuals by AMA-1ELISA test. A subset of samples was genotyping of HLA-DRB1 by PCR-SSP. We detected 13 different alleles of HLA-DRB gene, where the HLA-DRB1*04 was the commonest allele. A high frequency of responders to the antigen AMA-1 was detected, with increasing levels according to previous malaria experience. No significant association was observed among the response to P. vivax AMA-1 and, the variants of the CSP and the polymorphisms of HLA-DRB gene. The HLA-DRB1 has a heterogeneous distribution in the population studied, showing an effective contribution of Amerindian groups. The antibody response against the antigen AMA-1 does not influence the epidemiology of variants of the CSP of P. vivax. The polymorphisms of HLA-DRB1 gene do not influence the development of antibody response against AMA-1 in vivax malaria around the Brazilian Amazon region / Mestre
40

Regulation and function of hyaluronan binding by CD44 in the immune system

Ruffell, Brian 11 1900 (has links)
The proteoglycan CD44 is a widely expressed cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan, and is involved in processes ranging from metastasis to wound healing. In the immune system, leukocyte activation induces hyaluronan binding through changes in CD44 post-translational modification, but these changes have not been well characterized. Here I identify chondroitin sulfate addition to CD44 as a negative regulator of hyaluronan binding. Chondroitin sulfate addition was analyzed by sulfate incorporation and Western blotting and determined to occur at serine 180 in human CD44 using site-directed mutagenesis. Mutation of serine 180 increased hyaluronan binding by both a CD44-immunoglobulin fusion protein expressed in HEK293 cells, and full-length CD44 expressed in murine L fibroblast cells. In bone marrow-derived macrophages, hyaluronan binding induced by the inflammatory cytokines tumor necrosis factor-α and interferon-γ corresponded with reduced chondroitin sulfate addition to CD44. Retroviral infection of CD44⁻/⁻ macrophages with mouse CD44 containing a mutation at serine 183, equivalent to serine 180 in human CD44, resulted in hyaluronan binding that was constitutively high and no longer enhanced by stimulation. These results demonstrate that hyaluronan binding by CD44 is regulated by chondroitin sulfate addition in macrophages. A functional consequence of altered chondroitin sulfate addition and increased hyaluronan binding was observed in Jurkat T cells, which became more susceptible to activation-induced cell death when transfected with mutant CD44. The extent of cell death was dependent upon both the hyaluronan binding ability of CD44 and the size of hyaluronan itself, with high molecular mass hyaluronan having a greater effect than intermediate or low molecular mass hyaluronan. The addition of hyaluronan to pre-activated Jurkat T cells induced rapid cell death independently of Fas and caspase activation, identifying a unique Fas-independent mechanism for inducing cell death in activated cells. Results were comparable in splenic T cells, where high hyaluronan binding correlated with increased phosphatidylserine exposure, and hyaluronan-dependent cell death occurred in a population of restimulated cells in the absence of Fas-dependent cell death. Together these results reveal a novel mechanism for regulating hyaluronan binding and demonstrate that altered chondroitin sulfate addition can affect CD44 function. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate

Page generated in 0.0554 seconds