41 |
An adaptive modeling and simulation environment for combined-cycle data reconciliation and degradation estimation.Lin, TsungPo 26 June 2008 (has links)
Performance engineers face the major challenge in modeling and simulation for the after-market power system due to system degradation and measurement errors. Currently, the majority in power generation industries utilizes the deterministic data matching method to calibrate the model and cascade system degradation, which causes significant calibration uncertainty and also the risk of providing performance guarantees. In this research work, a maximum-likelihood based simultaneous data reconciliation and model calibration (SDRMC) is used for power system modeling and simulation. By replacing the current deterministic data matching with SDRMC one can reduce the calibration uncertainty and mitigate the error propagation to the performance simulation.
A modeling and simulation environment for a complex power system with certain degradation has been developed. In this environment multiple data sets are imported when carrying out simultaneous data reconciliation and model calibration. Calibration uncertainties are estimated through error analyses and populated to performance simulation by using principle of error propagation. System degradation is then quantified by performance comparison between the calibrated model and its expected new & clean status.
To mitigate smearing effects caused by gross errors, gross error detection (GED) is carried out in two stages. The first stage is a screening stage, in which serious gross errors are eliminated in advance. The GED techniques used in the screening stage are based on multivariate data analysis (MDA), including multivariate data visualization and principle component analysis (PCA). Subtle gross errors are treated at the second stage, in which the serial bias compensation or robust M-estimator is engaged. To achieve a better efficiency in the combined scheme of the least squares based data reconciliation and the GED technique based on hypotheses testing, the Levenberg-Marquardt (LM) algorithm is utilized as the optimizer.
To reduce the computation time and stabilize the problem solving for a complex power system such as a combined cycle power plant, meta-modeling using the response surface equation (RSE) and system/process decomposition are incorporated with the simultaneous scheme of SDRMC. The goal of this research work is to reduce the calibration uncertainties and, thus, the risks of providing performance guarantees arisen from uncertainties in performance simulation.
|
42 |
Méthodes numériques pour les problèmes des moindres carrés, avec application à l'assimilation de données / Numerical methods for least squares problems with application to data assimilationBergou, El Houcine 11 December 2014 (has links)
L'algorithme de Levenberg-Marquardt (LM) est parmi les algorithmes les plus populaires pour la résolution des problèmes des moindres carrés non linéaire. Motivés par la structure des problèmes de l'assimilation de données, nous considérons dans cette thèse l'extension de l'algorithme LM aux situations dans lesquelles le sous problème linéarisé, qui a la forme min||Ax - b ||^2, est résolu de façon approximative, et/ou les données sont bruitées et ne sont précises qu'avec une certaine probabilité. Sous des hypothèses appropriées, on montre que le nouvel algorithme converge presque sûrement vers un point stationnaire du premier ordre. Notre approche est appliquée à une instance dans l'assimilation de données variationnelles où les modèles stochastiques du gradient sont calculés par le lisseur de Kalman d'ensemble (EnKS). On montre la convergence dans L^p de l'EnKS vers le lisseur de Kalman, quand la taille de l'ensemble tend vers l'infini. On montre aussi la convergence de l'approche LM-EnKS, qui est une variante de l'algorithme de LM avec l'EnKS utilisé comme solveur linéaire, vers l'algorithme classique de LM ou le sous problème est résolu de façon exacte. La sensibilité de la méthode de décomposition en valeurs singulières tronquée est étudiée. Nous formulons une expression explicite pour le conditionnement de la solution des moindres carrés tronqués. Cette expression est donnée en termes de valeurs singulières de A et les coefficients de Fourier de b. / The Levenberg-Marquardt algorithm (LM) is one of the most popular algorithms for the solution of nonlinear least squares problems. Motivated by the problem structure in data assimilation, we consider in this thesis the extension of the LM algorithm to the scenarios where the linearized least squares subproblems, of the form min||Ax - b ||^2, are solved inexactly and/or the gradient model is noisy and accurate only within a certain probability. Under appropriate assumptions, we show that the modified algorithm converges globally and almost surely to a first order stationary point. Our approach is applied to an instance in variational data assimilation where stochastic models of the gradient are computed by the so-called ensemble Kalman smoother (EnKS). A convergence proof in L^p of EnKS in the limit for large ensembles to the Kalman smoother is given. We also show the convergence of LM-EnKS approach, which is a variant of the LM algorithm with EnKS as a linear solver, to the classical LM algorithm where the linearized subproblem is solved exactly. The sensitivity of the trucated sigular value decomposition method to solve the linearized subprobems is studied. We formulate an explicit expression for the condition number of the truncated least squares solution. This expression is given in terms of the singular values of A and the Fourier coefficients of b.
|
43 |
Umělá neuronová síť pro modelování polí uvnitř automobilu / Artificial neural network for modeling electromagnetic fields in a carKostka, Filip January 2014 (has links)
The project deals with artificial neural networks. After designing and debugging the test data set and the training sample set, we created a multilayer perceptron network in the Neural NetworkToolbox (NNT) of Matlab. When creating networks, we used different training algorithms and algorithms improving the generalization of the network. When creating a radial basis network, we did not use the NNT, but a specific source code in Matlab was written. Functionality of neural networks was tested on simple training and testing patterns. Realistic training data were obtained by the simulation of twelve monoconic antennas operating in the frequency range from 2 to 6 GHz. Antennas were located inside a mathematical model of Octavia II. Using CST simulations, electromagnetic fields in a car were obtained. Trained networks are described by regressive characteristics andthe mean square error of training. Algorithms improving generalization are applied on the created and trained networks. The performance of individual networks is mutually compared.
|
44 |
Orientace kamery v reálném čase / Camera Orientation in Real-TimeŽupka, Jiří January 2010 (has links)
This work deals with the orientation of the camera in real-time with a single camera. Offline methods are described and used as a reference for comparison of a real-time metods. Metods work in real-time Monocular SLAM and PTAM methods are there described and compared. Further, paper shows hints of advanced methods whereas future work is possible.
|
45 |
Prediktivní regulátory s principy umělé inteligence v prostředí MATLAB - B&R / Prediktive controllers with principles of artificial intelligenceMatys, Libor January 2008 (has links)
Master’s thesis deals with problems of predictive control especially Model (Based) Predictive Control (MBPC or MPC). Identifications methods are compared in the first part. Recursive least mean squares algorithm is compared with identification methods based on neural networks. Next parts deal with predictive control. There is described creation MPC with summing element and adaptive MPC. There is also compared fixed setting PSD controller with MPC. Responses on disturbance and changes of parameters of controlled plant are compared. Comparing is made on simulation models in MATLAB/Simulink and on physical model connected to PLC B&R.
|
46 |
Melizmų sintezė dirbtinių neuronų tinklais / Melisma Synthesis Using Artificial Neural NetworksLeonavičius, Romas 12 January 2007 (has links)
Modern methods of speech synthesis are not suitable for restoration of song signals due to lack of vitality and intonation in the resulted sounds. The aim of presented work is to synthesize melismas met in Lithuanian folk songs, by applying Artificial Neural Networks. An analytical survey of rather a widespread literature is presented. First classification and comprehensive discussion of melismas are given. The theory of dynamic systems which will make the basis for studying melismas is presented and finally the relationship for modeling a melisma with nonlinear and dynamic systems is outlined. Investigation of the most widely used Linear Prediction Coding method and possibilities of its improvement. The modification of original Linear Prediction method based on dynamic LPC frame positioning is proposed. On its basis, the new melisma synthesis technique is presented. Developed flexible generalized melisma model, based on two Artificial Neural Networks – a Multilayer Perceptron and Adaline – as well as on two network training algorithms – Levenberg- Marquardt and the Least Squares error minimization – is presented. Moreover, original mathematical models of Fortis, Gruppett, Mordent and Trill are created, fit for synthesizing melismas, and their minimal sizes are proposed. The last chapter concerns experimental investigation, using over 500 melisma records, and corroborates application of the new mathematical models to melisma synthesis of one performer.
|
47 |
Melizmų sintezė dirbtinių neuronų tinklais / Melisma Synthesis Using Artificial Neural NetworksLeonavičius, Romas 12 January 2007 (has links)
Modern methods of speech synthesis are not suitable for restoration of song signals due to lack of vitality and intonation in the resulted sounds. The aim of presented work is to synthesize melismas met in Lithuanian folk songs, by applying Artificial Neural Networks. An analytical survey of rather a widespread literature is presented. First classification and comprehensive discussion of melismas are given. The theory of dynamic systems which will make the basis for studying melismas is presented and finally the relationship for modeling a melisma with nonlinear and dynamic systems is outlined. Investigation of the most widely used Linear Prediction Coding method and possibilities of its improvement. The modification of original Linear Prediction method based on dynamic LPC frame positioning is proposed. On its basis, the new melisma synthesis technique is presented. Developed flexible generalized melisma model, based on two Artificial Neural Networks – a Multilayer Perceptron and Adaline – as well as on two network training algorithms – Levenberg- Marquardt and the Least Squares error minimization – is presented. Moreover, original mathematical models of Fortis, Gruppett, Mordent and Trill are created, fit for synthesizing melismas, and their minimal sizes are proposed. The last chapter concerns experimental investigation, using over 500 melisma records, and corroborates application of the new mathematical models to melisma synthesis of one performer.
|
48 |
Počítačové modelování a analýza dielektrických spekter / Computer modelling and analysis of dielectric spectraFrybert, Jan January 2011 (has links)
Complex permittivity, frequencies area, empirical functions of distribution of relaxation time, modelling, nonlinear regression, Levenberg-Marquardt algorithm.
|
49 |
Počítačové modelování a analýza dielektrických spekter / Computer modelling and analysis of dielectric spectraFrybert, Jan January 2011 (has links)
Complex permittivity, frequencies area, empirical functions of distribution of relaxation time, modelling, nonlinear regression, Levenberg-Marquardt algorithm.
|
50 |
Developing Artificial Neural Networks (ANN) Models for Predicting E. Coli at Lake Michigan BeachesMitra Khanibaseri (9045878) 24 July 2020 (has links)
<p>A neural
network model was developed to predict the E. Coli levels and classes in six
(6) select Lake Michigan beaches. Water quality observations at the time of
sampling and discharge information from two close tributaries were used as
input to predict the E. coli. This research was funded by the Indiana Department
of Environmental Management (IDEM). A user-friendly Excel Sheet based tool was
developed based on the best model for making future predictions of E. coli
classes. This tool will facilitate beach managers to take real-time decisions.</p>
<p>The nowcast
model was developed based on historical tributary flows and water quality
measurements (physical, chemical and biological). The model uses experimentally
available information such as total dissolved solids, total suspended solids,
pH, electrical conductivity, and water temperature to estimate whether the E.
Coli counts would exceed the acceptable standard. For setting up this model,
field data collection was carried out during 2019 beachgoer’s season.</p>
<p>IDEM
recommends posting an advisory at the beach indicating swimming and wading are
not recommended when E. coli counts exceed advisory standards. Based on the
advisory limit, a single water sample shall not exceed an E. Coli count of 235 colony
forming units per 100 milliliters (cfu/100ml). Advisories are removed when
bacterial levels fall within the acceptable standard. However, the E. coli
results were available after a time lag leading to beach closures from previous
day results. Nowcast models allow beach managers to make real-time beach
advisory decisions instead of waiting a day or more for laboratory results to
become available.</p>
<p>Using the
historical data, an extensive experiment was carried out, to obtain the
suitable input variables and optimal neural network architecture. The best feed-forward
neural network model was developed using Bayesian Regularization Neural Network
(BRNN) training algorithm. Developed ANN model showed an average prediction
accuracy of around 87% in predicting the E. coli classes. </p>
|
Page generated in 0.062 seconds