Spelling suggestions: "subject:"leva measure"" "subject:"ley measure""
1 |
Pricing of European type options for Levy and conditionally Levy type modelsSushko, Stepan January 2008 (has links)
<p>In this thesis we consider two models for the computation of option prices. The first one is a generalization of the Black-Scholes model. In this generalization the volatility Sigma is not a constant. In the simplest case it changes at once at a certain time moment Tau. In some sense this is the conditionally Levy model. For this generalized Black-Scholes model have been theoretically obtained formulas for vanilla Call/Put option prices. Under the assumption of a good prediction of the parameter Sigma the obtained numerical results fit the real dara better than standard Black-Scholes model.</p><p>Second model is an exponential Levy model, where a Levy process is the CGMY process. We use the finite-difference scheme for computations of option prices. As example we consider vanilla Call/Put, Double-Barrier and Up-and-out options. After the estimation of the parameters of the CGMY process by the method of moments we obtain options prices and calculate fitting error. This fitting error for the CGMY model is smaller than for the Black-Scholes model.</p>
|
2 |
Pricing of European type options for Levy and conditionally Levy type modelsSushko, Stepan January 2008 (has links)
In this thesis we consider two models for the computation of option prices. The first one is a generalization of the Black-Scholes model. In this generalization the volatility Sigma is not a constant. In the simplest case it changes at once at a certain time moment Tau. In some sense this is the conditionally Levy model. For this generalized Black-Scholes model have been theoretically obtained formulas for vanilla Call/Put option prices. Under the assumption of a good prediction of the parameter Sigma the obtained numerical results fit the real dara better than standard Black-Scholes model. Second model is an exponential Levy model, where a Levy process is the CGMY process. We use the finite-difference scheme for computations of option prices. As example we consider vanilla Call/Put, Double-Barrier and Up-and-out options. After the estimation of the parameters of the CGMY process by the method of moments we obtain options prices and calculate fitting error. This fitting error for the CGMY model is smaller than for the Black-Scholes model.
|
3 |
On the construction of point processes in statistical mechanicsNehring, Benjamin, Poghosyan, Suren, Zessin, Hans January 2013 (has links)
By means of the cluster expansion method we show that a recent result of Poghosyan and Ueltschi (2009) combined with a result of Nehring (2012) yields a construction of point processes of classical statistical mechanics as well as processes related to the Ginibre Bose gas of Brownian loops and to the dissolution in R^d of Ginibre's Fermi-Dirac gas of such loops. The latter will be identified as a Gibbs perturbation of the ideal Fermi gas. On generalizing these considerations we will obtain the existence of a large class of Gibbs perturbations of the so-called KMM-processes as they were introduced by Nehring (2012). Moreover, it is shown that certain "limiting Gibbs processes" are Gibbs in the sense of Dobrushin, Lanford and Ruelle if the underlying potential is positive. And finally, Gibbs modifications of infinitely divisible point processes are shown to solve a new integration by parts formula if the underlying potential is positive.
|
4 |
Point processes in statistical mechanics : a cluster expansion approachNehring, Benjamin January 2012 (has links)
A point process is a mechanism, which realizes randomly locally finite point measures. One of the main results of this thesis is an existence theorem for
a new class of point processes with a so called signed Levy pseudo measure L, which is an extension of the class of infinitely divisible point processes.
The construction approach is a combination of the classical point process theory, as developed by Kerstan, Matthes and Mecke, with the method of cluster expansions from statistical mechanics. Here the starting point is a family of signed Radon measures, which defines on the one hand the Levy pseudo measure L, and on the other hand locally the point process. The relation between L and the process is the following: this point process solves the integral cluster equation determined by L.
We show that the results from the classical theory of infinitely divisible point processes carry over in a natural way to the larger class of point
processes with a signed Levy pseudo measure. In this way we obtain e.g. a criterium for simplicity and a characterization through the cluster equation, interpreted as an integration by parts formula, for such point processes.
Our main result in chapter 3 is a representation theorem for the factorial moment measures of the above point processes. With its help we will identify the permanental respective determinantal point processes, which belong to the classes of Boson respective Fermion processes. As a by-product we obtain a representation of the (reduced) Palm kernels of infinitely divisible point processes.
In chapter 4 we see how the existence theorem enables us to construct (infinitely extended) Gibbs, quantum-Bose and polymer processes. The so called polymer processes seem to be constructed here for the first time.
In the last part of this thesis we prove that the family of cluster equations has certain stability properties with respect to the transformation of its solutions. At first this will be used to show how large the class of solutions of such equations is, and secondly to establish the cluster theorem of Kerstan, Matthes and Mecke in our setting. With its help we are able to enlarge the class of Polya processes to the so called branching Polya processes.
The last sections of this work are about thinning and splitting of point
processes. One main result is that the classes of Boson and Fermion processes remain closed under thinning. We use the results on thinning to identify a subclass of point processes with a signed Levy pseudo measure as doubly stochastic Poisson processes. We also pose the following question: Assume you observe a realization of a thinned point process. What is the distribution of deleted points? Surprisingly, the Papangelou kernel of the thinning, besides a constant factor, is given by the intensity measure of this conditional probability, called splitting kernel. / Ein Punktprozess ist ein Mechanismus, der zufällig ein lokalendliches Punktmaß realisiert. Ein Hauptresultat dieser Arbeit ist ein Existenzsatz für eine sehr große Klasse von Punktprozessen mit einem signierten Levy Pseudomaß L. Diese Klasse ist eine Erweiterung der Klasse der unendlich teilbaren Punktprozesse. Die verwendete Methode der Konstruktion ist eine Verbindung der klassischen Punktprozesstheorie, wie sie von Kerstan, Matthes und Mecke ursprünglich entwickelt wurde, mit der sogenannten Methode der Cluster-Entwicklungen aus der
statistischen Mechanik. Ausgangspunkt ist eine Familie von signierten Radonmaßen. Diese definiert einerseits das Levysche Pseudomaß L; andererseits wird mit deren Hilfe der Prozess lokal definiert. Der Zusammenhang zwischen L und dem Prozess ist so, dass der Prozess die durch L bestimmte Integralgleichung (genannt Clustergleichung) löst.
Wir zeigen, dass sich die Resultate aus der klassischen Theorie der unendlich teilbaren Punktprozesse auf natürliche Weise auf die neue Klasse der Punktprozesse mit signiertem Levy Pseudomaß erweitern lassen. So erhalten wir z.B. ein Kriterium für die Einfachheit und eine Charackterisierung durch die Clustergleichung für jene Punktprozesse. Unser erstes Hauptresultat in Kapitel 3 zur Analyse der konstruierten Prozesse ist ein Darstellungssatz der faktoriellen Momentenmaße. Mit dessen Hilfe werden wir die permanentischen respektive determinantischen Punktprozesse, die in die Klasse der Bosonen respektive Fermionen Prozesse fallen, identifizieren. Als ein Nebenresultat erhalten wir eine Darstellung der (reduzierten) Palm Kerne von unendlich teilbaren Punktprozessen. Im Kapitel 4 konstruieren wir mit Hilfe unseres Existenzsatzes unendlich ausgedehnte Gibbsche Prozesse sowie Quanten-Bose und Polymer Prozesse. Unseres Wissens sind letztere bisher nicht konstruiert worden. Im letzten Teil der Arbeit zeigen wir, dass die Familie der Clustergleichungen gewisse Stabilitätseigenschaften gegenüber gewissen Transformationen ihrer Lösungen aufweist. Dies wird erstens verwendet, um zu verdeutlichen, wie groß die Klasse der Punktprozesslösungen einer solchen Gleichung ist. Zweitens wird damit der Ausschauerungssatz von Kerstan, Matthes und Mecke in unserer allgemeineren Situation gezeigt. Mit seiner Hilfe können wir die Klasse der Polyaschen Prozesse auf die der von uns genannten Polya Verzweigungsprozesse vergrößern.
Der letzte Abschnitt der Arbeit beschäftigt sich mit dem Ausdünnen und dem Splitten von Punktprozessen. Wir beweisen, dass die Klassen der Bosonen und Fermionen Prozesse abgeschlossen unter Ausdünnung ist. Die
Ergebnisse über das Ausdünnen verwenden wir, um eine Teilklasse der Punktprozesse mit signiertem Levy Pseudomaß als doppelt stochastische Poissonsche Prozesse zu identifizieren. Wir stellen uns auch die Frage: Angenommen wir beobachten eine Realisierung einer Ausdünnung eines Punktprozesses. Wie sieht die Verteilung der gelöschten Punktkonfiguration aus? Diese bedingte Verteilung nennen wir splitting Kern, und ein überraschendes Resultat ist, dass der Papangelou-Kern der Ausdünnung, abgesehen von einem konstanten Faktor, gegeben ist durch das Intensitätsmaß des splitting Kernes.
|
5 |
Sur les modèles Tweedie multivariés / On multi variate tweedie modelsCuenin, Johann 06 December 2016 (has links)
Après avoir fait un rappel sur les généralités concernant les familles exponentielles naturelles et les lois Tweedie univariées qui en sont un exemple particulier, nous montrerons comment étendre ces lois au cas multivarié. Une première construction permettra de définir des vecteurs aléatoires Tweedie paramétrés pas un vecteur de moyenne et une matrice de dispersion. Nous montrerons que les corrélations entre les lois marginales peuvent être contrôlées et varient entre -1 et 1. Nous verrons aussi que ces vecteurs ont quelques propriétés communes avec les vecteurs gaussiens. Nous en donnerons une représentation matricielle qui permettra d'en simuler des observations. La seconde construction permettra d'introduire les modèles Tweedie multiples constitués d'une variable Tweedie dont l'observation sera la dispersion des autres marges, toutes de lois Tweedie elles aussi. Nous donnerons la variance généralisée de ces lois et montrerons que cette dernière peut-être estimée efficacement. Enfin, nous verrons que, modulo certaines restrictions, nous pourrons donner une caractérisation par la fonction de variance généralisée des familles exponentielles naturelles générées par ces lois. / After a reminder of the natural exponential families framework and the univariate Tweedie distributions, we build two multivariate extension of the latter. A first construction, called Tweedie random vector, gives a multivariate Tweedie distribution parametrized by a mean vector and a dispersion matrix. We show that the correlations between the margins can be controlled and vary between -1 and 1. Some properties shared with the well-known Gaussian vector are given. By giving a matrix representation, we can simulate observations of Tweedie random vectors. The second construction establishes the multiple stable Tweedie models. They are vectors of which the first component is Tweedie and the others are independant Tweedie, given the first one, and with dispersion parameter given by an observation of the first component. We give the generalized variance and show that it is a product of powered component of the mean and give an efficient estimator of this parameter. Finally, we can show, with some restrictions, that the generalized variance is a tool which can be used for characterizing the natural exponential families generated by multiple stable Tweedie models.
|
6 |
On New Constructive Tools in Bayesian Nonparametric InferenceAl Labadi, Luai 22 June 2012 (has links)
The Bayesian nonparametric inference requires the construction of priors on infinite dimensional spaces such as the space of cumulative distribution functions and the space of cumulative hazard functions. Well-known priors on the space of cumulative distribution functions are the Dirichlet process, the two-parameter Poisson-Dirichlet process and the beta-Stacy process. On the other hand, the beta process is a popular prior on the space of cumulative hazard functions. This thesis is divided into three parts. In the first part, we tackle the problem of sampling from the above mentioned processes. Sampling from these processes plays a crucial role in many applications in Bayesian nonparametric inference. However, having exact samples from these processes is impossible. The existing algorithms are either slow or very complex and may be difficult to apply for many users. We derive new approximation techniques for simulating the above processes. These new approximations provide simple, yet efficient, procedures for simulating these important processes. We compare the efficiency of the new approximations to several other well-known approximations and demonstrate a significant improvement. In the second part, we develop explicit expressions for calculating the Kolmogorov, Levy and Cramer-von Mises distances between the Dirichlet process and its base measure. The derived expressions of each distance are used to select the concentration parameter of a Dirichlet process. We also propose a Bayesain goodness of fit test for simple and composite hypotheses for non-censored and censored observations. Illustrative examples and simulation results are included. Finally, we describe the relationship between the frequentist and Bayesian nonparametric statistics. We show that, when the concentration parameter is large, the two-parameter Poisson-Dirichlet process and its corresponding quantile process share many asymptotic pr operties with the frequentist empirical process and the frequentist quantile process. Some of these properties are the functional central limit theorem, the strong law of large numbers and the Glivenko-Cantelli theorem.
|
7 |
On New Constructive Tools in Bayesian Nonparametric InferenceAl Labadi, Luai 22 June 2012 (has links)
The Bayesian nonparametric inference requires the construction of priors on infinite dimensional spaces such as the space of cumulative distribution functions and the space of cumulative hazard functions. Well-known priors on the space of cumulative distribution functions are the Dirichlet process, the two-parameter Poisson-Dirichlet process and the beta-Stacy process. On the other hand, the beta process is a popular prior on the space of cumulative hazard functions. This thesis is divided into three parts. In the first part, we tackle the problem of sampling from the above mentioned processes. Sampling from these processes plays a crucial role in many applications in Bayesian nonparametric inference. However, having exact samples from these processes is impossible. The existing algorithms are either slow or very complex and may be difficult to apply for many users. We derive new approximation techniques for simulating the above processes. These new approximations provide simple, yet efficient, procedures for simulating these important processes. We compare the efficiency of the new approximations to several other well-known approximations and demonstrate a significant improvement. In the second part, we develop explicit expressions for calculating the Kolmogorov, Levy and Cramer-von Mises distances between the Dirichlet process and its base measure. The derived expressions of each distance are used to select the concentration parameter of a Dirichlet process. We also propose a Bayesain goodness of fit test for simple and composite hypotheses for non-censored and censored observations. Illustrative examples and simulation results are included. Finally, we describe the relationship between the frequentist and Bayesian nonparametric statistics. We show that, when the concentration parameter is large, the two-parameter Poisson-Dirichlet process and its corresponding quantile process share many asymptotic pr operties with the frequentist empirical process and the frequentist quantile process. Some of these properties are the functional central limit theorem, the strong law of large numbers and the Glivenko-Cantelli theorem.
|
8 |
On New Constructive Tools in Bayesian Nonparametric InferenceAl Labadi, Luai January 2012 (has links)
The Bayesian nonparametric inference requires the construction of priors on infinite dimensional spaces such as the space of cumulative distribution functions and the space of cumulative hazard functions. Well-known priors on the space of cumulative distribution functions are the Dirichlet process, the two-parameter Poisson-Dirichlet process and the beta-Stacy process. On the other hand, the beta process is a popular prior on the space of cumulative hazard functions. This thesis is divided into three parts. In the first part, we tackle the problem of sampling from the above mentioned processes. Sampling from these processes plays a crucial role in many applications in Bayesian nonparametric inference. However, having exact samples from these processes is impossible. The existing algorithms are either slow or very complex and may be difficult to apply for many users. We derive new approximation techniques for simulating the above processes. These new approximations provide simple, yet efficient, procedures for simulating these important processes. We compare the efficiency of the new approximations to several other well-known approximations and demonstrate a significant improvement. In the second part, we develop explicit expressions for calculating the Kolmogorov, Levy and Cramer-von Mises distances between the Dirichlet process and its base measure. The derived expressions of each distance are used to select the concentration parameter of a Dirichlet process. We also propose a Bayesain goodness of fit test for simple and composite hypotheses for non-censored and censored observations. Illustrative examples and simulation results are included. Finally, we describe the relationship between the frequentist and Bayesian nonparametric statistics. We show that, when the concentration parameter is large, the two-parameter Poisson-Dirichlet process and its corresponding quantile process share many asymptotic pr operties with the frequentist empirical process and the frequentist quantile process. Some of these properties are the functional central limit theorem, the strong law of large numbers and the Glivenko-Cantelli theorem.
|
Page generated in 0.0669 seconds