• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Providing Mainstream Parser Generators with Modular Language Definition Support

Karol, Sven, Zschaler, Steffen 17 January 2012 (has links) (PDF)
The composition and reuse of existing textual languages is a frequently re-occurring problem. One possibility of composing textual languages lies on the level of parser specifications which are mainly based on context-free grammars and regular expressions. Unfortunately most mainstream parser generators provide proprietary specification languages and usually do not provide strong abstractions for reuse. New forms of parser generators do support modular language development, but they can often not be easily integrated with existing legacy applications. To support modular language development based on mainstream parser generators, in this paper we apply the Invasive Software Composition (ISC) paradigm to parser specification languages by using our Reuseware framework. Our approach is grounded on a platform independent metamodel and thus does not rely on a specific parser generator.
2

Providing Mainstream Parser Generators with Modular Language Definition Support

Karol, Sven, Zschaler, Steffen 17 January 2012 (has links)
The composition and reuse of existing textual languages is a frequently re-occurring problem. One possibility of composing textual languages lies on the level of parser specifications which are mainly based on context-free grammars and regular expressions. Unfortunately most mainstream parser generators provide proprietary specification languages and usually do not provide strong abstractions for reuse. New forms of parser generators do support modular language development, but they can often not be easily integrated with existing legacy applications. To support modular language development based on mainstream parser generators, in this paper we apply the Invasive Software Composition (ISC) paradigm to parser specification languages by using our Reuseware framework. Our approach is grounded on a platform independent metamodel and thus does not rely on a specific parser generator.

Page generated in 0.0469 seconds