• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Crane lifting operation planning and lifted object spatial trajectory analysis

Olearczyk, Jacek Unknown Date
No description available.
2

Crane lifting operation planning and lifted object spatial trajectory analysis

Olearczyk, Jacek 11 1900 (has links)
Compact facility designs and retro-fitting of facilities that involve heavy lifts are often performed in congested areas. Tight schedules increase the requirement to provide detailed heavy lift analysis. The planning of every aspect of a critical lift operation is essential. Managing the behavior and trajectory of the lifted object during the lift is often left to the field crew. The rigger signalman and the crane operator communicate by radio, or by hand signals, to maneuver the lifted object between obstructions. This thesis presents advancements in the development of mathematical algorithms for the lift object trajectory path and analysis. The proposed methodology is divided into smaller manageable phases to control the process and at the same time create independent modules. Each step of the lifted object movement was algebraically-digitally tracked, starting at the lifted object pick-point through an optimum path development to the objects final position or set-point. Parameters such as the minimum distance between the lifted object and passing obstructions and the minimum clearance between the lifted object and the crane boom envelope are some of the many predefined rules that were taken into account. Each step in the developed algorithm provides a short description, partial decision flowchart, and graphical interpretation of the problem, and some sections cover mathematical calculations of a defined path. The lifted objects spatial trajectory analysis and optimization are part of the complex assignment relating to the crane selection process. The proposed methodology is tested on a case study, which is also described in this thesis in order to illustrate the essential features of the proposed methodology. / Construction Engineering and Management

Page generated in 0.0295 seconds