• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hypersonic free-flight dynamic stability studies

Lewis, H. O. January 1996 (has links)
No description available.
2

Crane lifting operation planning and lifted object spatial trajectory analysis

Olearczyk, Jacek Unknown Date
No description available.
3

Crane lifting operation planning and lifted object spatial trajectory analysis

Olearczyk, Jacek 11 1900 (has links)
Compact facility designs and retro-fitting of facilities that involve heavy lifts are often performed in congested areas. Tight schedules increase the requirement to provide detailed heavy lift analysis. The planning of every aspect of a critical lift operation is essential. Managing the behavior and trajectory of the lifted object during the lift is often left to the field crew. The rigger signalman and the crane operator communicate by radio, or by hand signals, to maneuver the lifted object between obstructions. This thesis presents advancements in the development of mathematical algorithms for the lift object trajectory path and analysis. The proposed methodology is divided into smaller manageable phases to control the process and at the same time create independent modules. Each step of the lifted object movement was algebraically-digitally tracked, starting at the lifted object pick-point through an optimum path development to the objects final position or set-point. Parameters such as the minimum distance between the lifted object and passing obstructions and the minimum clearance between the lifted object and the crane boom envelope are some of the many predefined rules that were taken into account. Each step in the developed algorithm provides a short description, partial decision flowchart, and graphical interpretation of the problem, and some sections cover mathematical calculations of a defined path. The lifted objects spatial trajectory analysis and optimization are part of the complex assignment relating to the crane selection process. The proposed methodology is tested on a case study, which is also described in this thesis in order to illustrate the essential features of the proposed methodology. / Construction Engineering and Management
4

Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance

Tung, Frederick January 2010 (has links)
Video surveillance systems are playing an increasing role in preventing and investigating crime, protecting public safety, and safeguarding national security. In a typical surveillance installation, a human operator has to constantly monitor a large array of video feeds for suspicious behaviour. As the number of cameras increases, information overload makes manual surveillance increasingly difficult, adding to other confounding factors like human fatigue and boredom. The objective of an intelligent vision-based surveillance system is to automate the monitoring and event detection components of surveillance, alerting the operator only when unusual behaviour or other events of interest are detected. While most traditional methods for trajectory-based unusual behaviour detection rely on low-level trajectory features, this thesis improves a recently introduced approach that makes use of higher-level features of intentionality. Individuals in a scene are modelled as intentional agents instead of simply objects. Unusual behaviour detection then becomes a task of determining whether an agent's trajectory is explicable in terms of learned spatial goals. The proposed method extends the original goal-based approach in three ways: first, the spatial scene structure is learned in a training phase; second, a region transition model is learned to describe normal movement patterns between spatial regions; and third, classification of trajectories in progress is performed in a probabilistic framework using particle filtering. Experimental validation on three published third-party datasets demonstrates the validity of the proposed approach.
5

Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance

Tung, Frederick January 2010 (has links)
Video surveillance systems are playing an increasing role in preventing and investigating crime, protecting public safety, and safeguarding national security. In a typical surveillance installation, a human operator has to constantly monitor a large array of video feeds for suspicious behaviour. As the number of cameras increases, information overload makes manual surveillance increasingly difficult, adding to other confounding factors like human fatigue and boredom. The objective of an intelligent vision-based surveillance system is to automate the monitoring and event detection components of surveillance, alerting the operator only when unusual behaviour or other events of interest are detected. While most traditional methods for trajectory-based unusual behaviour detection rely on low-level trajectory features, this thesis improves a recently introduced approach that makes use of higher-level features of intentionality. Individuals in a scene are modelled as intentional agents instead of simply objects. Unusual behaviour detection then becomes a task of determining whether an agent's trajectory is explicable in terms of learned spatial goals. The proposed method extends the original goal-based approach in three ways: first, the spatial scene structure is learned in a training phase; second, a region transition model is learned to describe normal movement patterns between spatial regions; and third, classification of trajectories in progress is performed in a probabilistic framework using particle filtering. Experimental validation on three published third-party datasets demonstrates the validity of the proposed approach.
6

Group Trajectory Analysis in Sport Videos

Duraivelan, Shreenivasan 18 May 2021 (has links)
No description available.
7

Towards Robust Multiple-Target Tracking in Unconstrained Human-Populated Environments

Rowe, Daniel 08 February 2008 (has links)
No description available.
8

Analysis of Transfer Trajectories Utilizing Sequential Saturn-Titan Aerocaptures

Payne, Isaac Lee 03 July 2023 (has links)
This thesis aims to investigate the potential of a transfer orbit using successive aerocaptures at Saturn and Titan to establish a science orbit around Titan. Titan is an Earth-like moon with a dense atmosphere and organic compounds present. It has many similarities with Earth that are useful to study such as superrotation. Superrotation is when the atmosphere rotates faster than the body it surrounds. In order to study Titan, we need to establish an orbit around it. The Saturn system is distant from Earth, 8.5 Astronomical Units (AU) which makes it difficult to reach from a time and velocity point of view. We propose to use an aerocapture at Saturn to intercept Titan with lower relative velocity in order to perform an aerocapture at Titan. The analysis was performed in primarily MATLAB to simulate the orbits. The results of this showed that we can aerocapture a spacecraft at Saturn and arrive at Titan within roughly 4 to 8 km/s relative velocity regardless of the incoming hyperbolic excess velocity at the Saturn system. This can be improve upon by using intermediate transfer orbits, such as bi-elliptics, to arrive with even lower relative velocities to Titan of as low as 1 km/s. The drag acceleration experienced during the Saturn aerocapture had peak values of between 0.2 and 1.4 g's and acceleration over 50% of the peak is experienced between 6.8 and 8 minutes. This capture method has the potential to make Titan more easily accessible and allow for scientific study of a clear target for improving our understanding of Earth-like processes on other bodies in our solar system. / Master of Science / This thesis aims to investigate the potential of a transfer orbit using successive aerocaptures at Saturn and Titan to establish a science orbit around Titan. Aerocapturing is utilizing the atmosphere of a body to slow down a spacecraft. Titan is an Earth-like moon with a dense atmosphere and organic compounds present. It has many similarities with Earth that are useful to study such as superrotation. Superrotation is when the atmosphere of a body rotates faster than the body it surrounds. In order to study Titan, we need to establish an orbit around it. The Saturn system is distant from Earth, 8.5 Astronomical Units (AU) which makes it difficult to reach from a time and velocity point of view. It takes a large amount of time to get there so we attempt to get there faster by increasing velocity. This means we arrive at the Saturn system with a large amount of velocity that we need to counter-act in order to orbit. We propose to use an aerocapture at Saturn to intercept Titan with lower velocity in order to perform another aerocapture at Titan to slow into an orbit. The analysis was performed in primarily MATLAB to simulate the orbits. The results of this showed that we can aerocapture a spacecraft at Saturn and arrive at Titan within roughly 4 to 8 km/s regardless of the incoming velocity to the Saturn system. This can be improve upon by using intermediate transfer orbits, after capturing at Saturn, to arrive with even lower velocities at Titan of as low as 1 km/s. The drag acceleration experienced during the Saturn aerocapture had peak values of between 0.2 and 1.4 g's and acceleration over 50% of the peak is experienced between 6.8 and 8 minutes. This is relatively gentle for an aerocapture and means the spacecraft likely will not require significant structural support. This capture method has the potential to make Titan more easily accessible and allow for scientific study of a clear target for improving our understanding of Earth-like processes on other bodies in our solar system.
9

Trajectories of Headache Disability Treatment Response: Psychosocial and Clinical Correlates

Lewis, Kristin N. January 2009 (has links)
No description available.
10

State Space Modeling and Power Flow Analysis of Modular Multilevel Converters

Li, Chen 19 July 2016 (has links)
For the future of sustainable energy, renewable energy will need to significantly penetrate existing utility grids. While various renewable energy sources are networked with high-voltage DC grids, integration between these high-voltage DC grids and the existing AC grids is a significant technical challenge. Among the limited choices available, the modular multi-level converter (MMC) is the most prominent interface converter used between the DC and AC grids. This subject has been widely pursued in recent years. One of the important design challenges when using an MMC is to reduce the capacitor size associated with each module. Currently, a rather large capacitor bank is required to store a certain amount of line-frequency related circulating energy. Several control strategies have been introduced to reduce the capacitor voltage ripples by injecting certain harmonic current. Most of these strategies were developed using trial and error and there is a lack of a systematic means to address this issue. Most recently, Yadong Lyu has proposed to control the modulation index in order to reduce capacitor ripples. The total elimination of the unwanted circulating power associated with both the fundamental line frequency and the second-order harmonic was demonstrated, and this resulted in a dramatic reduction in capacitor size. To gain a better understanding of the intricate operation of the MMC, this thesis proposes a state-space analysis technique in the present paper. Combining the power flow analysis with the state trajectory portrayed on a set of two-dimensional state plans, it clearly delineates the desired power transfer from the unwanted circulating energy, thus leading to an ultimate reduction in the circulation energy and therefore the required capacitor volume. / Master of Science

Page generated in 0.0595 seconds