• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Towards Selective Ethylene Tetramerization

Shaikh, Yacoob 21 August 2012 (has links)
There is an increasing trend towards advancing the understanding and development of ethylene oligomerization catalysts, both in academia and industry. The metal of choice in this chemistry is invariably chromium, which has shown great versatility in selective trimerization/tetramerization, non-selective oligomerization and polymerization of ethylene. While much success has been achieved in ethylene trimerization, the same con not be said about tetramerization catalysis. Aminophosphine based ligands have demonstrated their ability towards selective 1-octene production, however, the popular PNP catalyst is able to achieve only 70% selectivity. In order to explore the possibility of developing and enhancing the selectivity of chromium based ethylene tetramerization catalyst, this thesis work was undertaken. The ligand systems we chose for our work were bidentate aminophosphine based (PN(CH2)nNP), which has yielded interesting selective oligomerization. Subtle modifications were found to result in drastic changes in selectivity, from tetramerization (PN(CH2)3NP) to trimerization (PN(CH2)2NP). We managed to successfully develop the first truly selective (over 90%) 1-octene catalyst with polymer-free behavior. Further modifications on the ligand framework, where one atom of Si was used to link the two NP units, resulted in non-selective oligomerization, in which case we determined that the oxidation-state of chromium is a key player. We explored other modifications on our selective ligands in which one of the arms on the bidentate ligand was replaced with a base-donor amine, phosphine or pyridine, and resulted in interesting selectivity changes. The final modification that we tested was a novel N(CH2)2P ligand and found it to be a highly active, non-selective oligomerization catalyst.
12

Towards Selective Ethylene Tetramerization

Shaikh, Yacoob 21 August 2012 (has links)
There is an increasing trend towards advancing the understanding and development of ethylene oligomerization catalysts, both in academia and industry. The metal of choice in this chemistry is invariably chromium, which has shown great versatility in selective trimerization/tetramerization, non-selective oligomerization and polymerization of ethylene. While much success has been achieved in ethylene trimerization, the same con not be said about tetramerization catalysis. Aminophosphine based ligands have demonstrated their ability towards selective 1-octene production, however, the popular PNP catalyst is able to achieve only 70% selectivity. In order to explore the possibility of developing and enhancing the selectivity of chromium based ethylene tetramerization catalyst, this thesis work was undertaken. The ligand systems we chose for our work were bidentate aminophosphine based (PN(CH2)nNP), which has yielded interesting selective oligomerization. Subtle modifications were found to result in drastic changes in selectivity, from tetramerization (PN(CH2)3NP) to trimerization (PN(CH2)2NP). We managed to successfully develop the first truly selective (over 90%) 1-octene catalyst with polymer-free behavior. Further modifications on the ligand framework, where one atom of Si was used to link the two NP units, resulted in non-selective oligomerization, in which case we determined that the oxidation-state of chromium is a key player. We explored other modifications on our selective ligands in which one of the arms on the bidentate ligand was replaced with a base-donor amine, phosphine or pyridine, and resulted in interesting selectivity changes. The final modification that we tested was a novel N(CH2)2P ligand and found it to be a highly active, non-selective oligomerization catalyst.
13

Towards Selective Ethylene Tetramerization

Shaikh, Yacoob January 2012 (has links)
There is an increasing trend towards advancing the understanding and development of ethylene oligomerization catalysts, both in academia and industry. The metal of choice in this chemistry is invariably chromium, which has shown great versatility in selective trimerization/tetramerization, non-selective oligomerization and polymerization of ethylene. While much success has been achieved in ethylene trimerization, the same con not be said about tetramerization catalysis. Aminophosphine based ligands have demonstrated their ability towards selective 1-octene production, however, the popular PNP catalyst is able to achieve only 70% selectivity. In order to explore the possibility of developing and enhancing the selectivity of chromium based ethylene tetramerization catalyst, this thesis work was undertaken. The ligand systems we chose for our work were bidentate aminophosphine based (PN(CH2)nNP), which has yielded interesting selective oligomerization. Subtle modifications were found to result in drastic changes in selectivity, from tetramerization (PN(CH2)3NP) to trimerization (PN(CH2)2NP). We managed to successfully develop the first truly selective (over 90%) 1-octene catalyst with polymer-free behavior. Further modifications on the ligand framework, where one atom of Si was used to link the two NP units, resulted in non-selective oligomerization, in which case we determined that the oxidation-state of chromium is a key player. We explored other modifications on our selective ligands in which one of the arms on the bidentate ligand was replaced with a base-donor amine, phosphine or pyridine, and resulted in interesting selectivity changes. The final modification that we tested was a novel N(CH2)2P ligand and found it to be a highly active, non-selective oligomerization catalyst.
14

Hydroxyamidinates et polymères de coordination : suspicions et valences mixtes

Leblanc, Mathieu 07 1900 (has links)
Dans un contexte où l’énergie représente un enjeu majeur pour les pays et organisations à économies émergentes et développées, la recherche de nouvelles sources renouvelables et la démocratisation des vecteurs énergétiques permettant l’approvisionnement mondial de façon durable constitue un devoir pour la communauté scientifique internationale. D’ailleurs, il serait essentiel que les nombreuses disciplines de la chimie concertent leurs efforts. Plus particulièrement, la croissance de la recherche en chimie de coordination orientée vers la photosynthèse artificielle ainsi que le développement de matériaux fonctionnels démontre l’importance indéniable de ce champ de recherche. Ce travail présente dans un premier temps l’étude des différentes voies de synthèse d’hydroxyamidines, un ligand chélatant aux propriétés de coordination prometteuses ne recevant que très peu d’attention de la part de la communauté scientifique. Dans un deuxième temps, nous présenterons le développement d’une stratégie d’assemblage de leurs complexes supramoléculaires impliquant des métaux de transition abondants et peu dispendieux de la première rangée. Dans un troisième temps, il sera question de l’investigation de leurs propriétés photophysiques et électrochimiques à des fins d’applications au sein de matériaux fonctionnels. Pour ce faire, les différentes voies de synthèse des hydroxyamidines et de leurs amidines correspondantes qui ont précédemment été étudiées par les membres du groupe seront tout d’abord perfectionnées, puis investiguées afin de déterminer leur versatilité. Ensuite, les propriétés de complexation des amox résultantes comportant des motifs sélectionnés seront déterminées pour enfin étudier les propriétés photophysiques et électrochimiques d’une série de complexes de métaux de transition de la première rangée. En somme, plusieurs designs qu’offrent les amox et bis-amox sont étudiés et les propriétés des architectures résultantes de leur auto-assemblage sont déterminées. / In a context where energy supply represents a major challenge for countries and organizations with emerging and developed economies, the search for new renewable resources and the democratization of energy vectors allowing sustainable worldwide supply is a responsibility for the international scientific community. Besides, it would be essential that the many disciplines of chemistry concerted their efforts. In particular, the growth of research in coordination chemistry oriented toward artificial photosynthesis and the development of functional materials demonstrates the undeniable importance of this field of research. The first part of the work presents different synthetic routes to hydroxyamidines, a chelating ligand with promising properties and receiving very little attention from the scientific community. Secondly, we present the development of a strategy of assembly of their supramolecular complexes involving abundant and cheap first row transition metal. Thirdly, we will discuss the investigation of their photophysical and electrochemical properties for their purposes in functional materials applications. To do this, the different synthesis routes of hydroxyamidines and their corresponding amidines which have previously been studied by other members of the group will first be improved then investigated to determine their versatility. Next, the complexing properties of the resulting amox having selected patterns will be determined to finally study the photophysical and electrochemical properties of a series of first row transition metal complexes. In sum, the various designs offered by amox and the bis-amox complexes are studied and the properties of the resulting architectures of their self-assemblies are determined.

Page generated in 0.0636 seconds