• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lättgaskanonens innerballistik : Teori, simulering och parameterstudie / Internal Ballistics of a Light Gas Gun : Theory, Simulation and Parametric Study

Landemoo, Viktor January 2021 (has links)
En lättgaskanon är en typ av kanon som används vid experiment där mycket snabba förlopp är av intresse, till exempel hypersonisk strömning och höghastighetskollisioner. Kanontypen når betydligt högre hastigheter än en konventionell kanon då projektilen accelereras genom eldröret av en gas med låg molekylmassa som vätgas eller helium istället för krutgaser. Denna lättgas komprimeras först till högt tryck och temperatur i pumptuben av en kolv som accelererats av en krutladdning. Pumptuben är ett rör anslutet till eldröret som initialt är frånskild av ett membran. För kanonen kan en mängd olika parametrar varieras och hur dessa ska väljas för att en viss mynningshastighet ska nås är inte självklart. Vid FOI har val av parametrar historiskt gjorts baserat på erfarenhet och genom experiment vilket kan vara tidsödslande. Syftet med examensarbetet var därför att simulera kanonen och undersöka hur olika parametrar påverkar dess prestanda. Forskningsfrågor som skulle besvaras var hur olika parametrar påverkar projektilens mynningshastighet och vilket utav två eldrörsalternativ som är bäst lämpat för en viss projektilvikt. Det innerballistiska förloppet i kanonen har simulerats för olika parameterkombinationer med ett program utvecklat specifikt för lättgaskanoner vid NASA:s Ames Research Center och modellen har i viss mån kunnat jämföras mot experimentell data. Resultatet av simuleringarna är att mängden lättgas och krut båda har stor inverkan på mynningshastigheten och att högre kolvvikt jämnar ut trycktoppar som uppstår till följd av stötar i gasen. Att ändra membranets öppningstryck ger ingen förbättring av kanonprestandan för den undersökta projektilvikten och utav de två eldrören som undersökts är det med större kaliber mer lämpligt för de aktuella experimenten. / A light gas gun is a type of gun which is used for experiments when high velocity phenomena are of interest, such as hypersonic flow and high-velocity impacts. The gun type can reach much higher velocities than a conventional gun as the projectile is accelerated down the barrel by a gas with low molecular mass such as hydrogen or helium instead of combustion gasses. This light gas is first compressed to high pressure and temperature in the pump tube with a piston which is accelerated with a propellant charge. The pump tube is connected to the barrel but initially separated from it with a membrane. A vast array of parameters can be varied on the gun in order to achieve a target muzzle velocity and their selection is not trivial. Historically parameters have been selected at FOI through experience and experiments which can be tedious. The purpose of this thesis was to simulate the gun and investigate how various parameters influence its performance. The research questions to be answered was how the parameters influence the muzzle velocity of the projectile and which of two barrels is the most suitable for a given projectile weight. The internal ballistics of the gun was simulated for various combinations of parameters using a program specifically developed for light gas guns at NASA's Ames Research Center and the model has to some extent been compared to experimental data. The result of the simulations shows that the amount of light gas and the propellant charge have a significant effect of the achieved velocity and that the weight of the piston has a reducing effect on the pressure peaks caused by shockwaves in the gas. Changing the opening pressure of the membrane does not improve gun performance for the investigated projectile weight and of the two barrels investigated the one with larger calibre is better suited for the experiments of interest.
2

Failure of polymeric materials at ultra-high strain rates

Callahan, Kyle Richard 10 May 2024 (has links) (PDF)
Understanding the failure behavior of polymers subjected to an ultrahigh strain rate (UHSR) impact is crucial for their applications in any protective shielding. But little is known about how polymers respond to UHSR events at the macroscale, or what effect their chemical makeups and morphology contribute. This dissertation aims to answer these questions by characterizing the responses of polymers subjected to UHSRs, investigating how the polymer molecular architecture and morphologies alter the macroscopic response during UHSRs via hypervelocity impact (HVI), linking the behaviors of UHSR events between the macro- and nano-length scales, and determining the consequences of UHSR impacts on polymer chains. Macroscale UHSR impacts are conducted using a two-stage light gas gun (2SLGG) to induce an HVI. Different molecular weights and thicknesses of polycarbonate were considered. The HVI behavior of polycarbonate is characterized using both real-time and postmortem techniques. The response depends on target thickness and impact velocity (vi). However, negligible difference is observed between the HVI results for the two differing entanglement densities. These contrasts previous conclusions drawn on the nanoscale during UHSR impacts which capture an increase in the energy arrested from the projectile with increasing entanglement density. To link the UHSR phenomena from nano to macroscale, laser-induced projectile impact testing (LIPIT) is conducted on polymethyl methacrylate (PMMA) thin films on the nanoscale in addition to ballistic and 2SLGG impacts at macroscale. Applying Buckingham-Π theorem, scaling relationships for the minimum perforation velocity and the residual velocity across these length scales were developed. It is shown that the ratios between target thickness to projectile radius, between projectile and target density, and the velocity of the compressive stress wave traveling through the target are the governing parameters for the UHSR responses of polymers across theses length scales. The effect UHSRs have on the polymer is investigated via ex-situ analysis by capturing polymer debris using a custom-built debris catcher. Different material-vi combinations are examined. X-ray diffraction and differential scanning calorimetry are used to characterize the HVI debris. Evidence of char was found within the debris. This dissertation advances the knowledge regarding the failure behavior of polymer materials subjected to UHSRs.

Page generated in 0.0449 seconds