• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The ultra-high lime with aluminum process for removing chloride from recirculating cooling water

Abdel-wahab, Ahmed Ibraheem Ali 30 September 2004 (has links)
Chloride is a deleterious ionic species in cooling water systems because it is important in promoting corrosion. Chloride can be removed from cooling water by precipitation as calcium chloroaluminate using ultra-high lime with aluminum process (UHLA). The research program was conducted to study equilibrium characteristics and kinetics of chloride removal by UHLA process, study interactions between chloride and sulfate or silica, and develop a model for multicomponent removal by UHLA. Kinetics of chloride removal with UHLA was investigated. Chloride removal was found to be fast and therefore, removal kinetics should not be a limitation to applying the UHLA process. Equilibrium characteristics of chloride removal with UHLA were characterized. Good chloride removal was obtained at reasonable ranges of lime and aluminum doses. However, the stoichiometry of chloride removal with UHLA deviated from the theoretical stoichiometry of calcium chloroaluminate precipitation. Equilibrium modeling of experimental data and XRD analysis of precipitated solids indicated that this deviation was due to the formation of other solid phases such as tricalcium hydroxyaluminate and tetracalcium hydroxyaluminate. Effect of pH on chloride removal was characterized. Optimum pH for maximum chloride removal was pH 12 ± 0.2. Results of equilibrium experiments at different temperatures indicated that final chloride concentrations slightly increased when water temperature increased at temperatures below 40oC. However, at temperatures above 40oC, chloride concentration substantially increased with increasing water temperature. An equilibrium model was developed to describe chemical behavior of chloride removal from recycled cooling water using UHLA. Formation of a solid solution of calcium chloroaluminate, tricalcium hydroxyaluminate, and tetracalcium hydroxyaluminate was found to be the best mechanism to describe the chemical behavior of chloride removal with UHLA. Results of experiments that studied interactions between chloride and sulfate indicated that sulfate is preferentially removed over chloride. Final chloride concentration increased with increasing initial sulfate concentration. Silica was found to have only a small effect on chloride removal. The equilibrium model was modified in order to include sulfate and silica reactions along with chloride in UHLA process and it was able to accurately predict the chemical behavior of simultaneous removal of chloride, sulfate, and silica with UHLA.
2

Chemical usage and savings at the Austin Water Utility drinking water treatment plants

Dobbertien, Matthew Francis, 1988- 18 June 2012 (has links)
The goal of this research was to maintain excellent water quality at reduced chemical operations cost. Chemical usage data at the Austin water treatment plants were examined by identifying trends and investigating suspected inefficiencies. The investigation consisted in jar test experiments, plant-scale experiments, and equilibrium modeling. Lime and ferric sulfate were suspected to be added inefficiently with respect to cost while the other treatment chemicals were assessed to be added efficiently. Lime was investigated in greater depth than ferric sulfate because ferric sulfate was better characterized in its effect on finished water quality within the range of interest. The goal of lime addition is to remove hardness from the water by a process called lime softening. Hardness removal decreases corrosion in transmission lines and prevents deposition of unwanted solids in household appliances. Additionally, lime softening aids in particle removal and disinfection-by-product precursor reduction. The efficiency of lime addition was evaluated based on settled water pH and causticity goals, which serve as the operating parameters for the water treatment plants. The most efficient lime softening occurs when multiple softening goals are simultaneously achieved. First, the dissolved calcium concentration must achieve a minimum. Second, the dissolved magnesium concentration must be reduced by at least 10 mg/L as CaCO₃. Third, total alkalinity must be preserved at its maximum concentration while also achieving excellent hardness removal. Fourth, natural organic matter (NOM), which serves as a precursor for disinfection-by-products, must be removed sufficiently to achieve DBP reduction goals. Finally, the turbidity in the effluent from the settling basin must be below 2.0 NTU. Through the chemical investigation of lime based on existing scientific literature, computer modeling, jar test experiments, and full-scale testing, it was determined that the optimal condition operating condition for lime softening was a settled water pH range from 10.0 - 10.1. / text
3

Precipitative Softening and Ultrafiltration Treatment of Beverage Water

Aguinaldo, Jorge T. 05 April 2006 (has links)
Lime softening, chlorination, clarification and filtration have been long recognized treatment processes for beverage water specifically the carbonated soft drink (CSD) because it provides consistent water quality required for bottling plants, however these processes are becoming uneconomical and causes more problems than the benefits they offer. These processes require very large foot print, occupy large plant volume, and generate large volume of sludge which causes disposal problems. Chlorination produces trihalomethanes (THMs) and other by-products which are detrimental to health and imparts tastes to the final products. Using the newly developed submerged spiral wound ultrafiltration membranes in conjunction with lime softening may replace the conventional lime softening, clarification and filtration processes. This research was conducted to demonstrate the feasibility of integrating immersed ultrafiltration (UF) membrane with lime softening. The objectives of this research was to achieve the water quality required by the CSD bottlers; determine the relationships of operating parameters such as pH and membrane flux with trans-membrane pressure (TMP), and membrane permeability; determine the optimum dosage of lime; evaluate the operating parameters as basis for the design and construction of the full scale plant; and predict the membrane cleaning intervals. A pilot unit consisting of lime reactor and UF system was designed and built for this research. The pilot unit was operated at various pH ranging from 7.3 to 11.2 and at membrane flux rates of 15, 30 and 45 gfd. The pilot unit was also operated at the CSD bottler’s operating conditions which is pH 9.8 at flux of 30 gfd. The pilot unit operated for a total of 1800 hours. The raw water source was from city water supply. The filtrate from the pilot unit achieved alkalinity reduction to 20 to 30 mg/L preferred by CSD bottlers, with lime dosage close to the calculated value. The filtrate turbidity during the test was consistently within 0.4 to 0.5 NTU. The TMP values obtained during the test ranges from 0.1 to 2.5 psi, while the permeability values ranges from 18.19 to 29.6 gfd/psi. The increase in flux results to corresponding increase in TMP, and increase in operating pH, increases the rate of TMP. Permeability decreases with increasing operating pH. The TOC reduction ranges from 2.6 % to 15.8% with increasing operating pH. No scaling of the UF membranes was observed during the test. Thirty days UF membrane cleaning interval was predicted. The results from this research can use as the basis of designing and operating a full scale Lime Softening UF Treatment Plant.
4

Enhanced Removal of Natural Organic Matter During Lime-Soda Softening

Bob, Mustafa M. 19 March 2003 (has links)
No description available.

Page generated in 0.1033 seconds