• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 49
  • 17
  • 12
  • 12
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 249
  • 33
  • 24
  • 18
  • 17
  • 17
  • 17
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Vitreoretinální rozhraní ve vztahu k chirurgické léčbě makulárních onemocnění / Vitreoretinal interface in relation to surgery on macular disorders

Kalvoda, Jan January 2012 (has links)
1 Abstract Introduction The vitreoretinal (VR) interface of the eye is a dynamically evolving environment which significantly influences and indicates the course of macular disorders. The main topic of the presented paper is research on the VR interface in relation to surgery on diabetic macular edema (ME), partial macular defects (PMD) and idiopathic macular holes (IMH). Aims The aims of the research were to find out new knowledge about specific characteristics of and changes in the VR interface in eyes with diabetic ME, PMD and IMH, namely with main attention focused on the internal limiting membrane (ILM) of the retina and the epimacular membrane (EMM). Methods Histopathologic and morphometric analyses were carried out on samples of the ILM of the retina and the EMM which were taken during pars plana vitrectomy (PPV) of eyes of sets of patients with diabetic ME, PMD and IMH. The analytic results were statistically evaluated and interpreted in relation to clinical factors and anatomical results of the PPV. Results Treatment of diabetic ME with removal of the ILM resulted in improved visual acuity (VA), at minimum 2 lines on the ETDRS table, in 51.8% surgically treated eyes and remained the same in 33.9% of eyes. A comparison study confirmed that PPV with preserving of the ILM achieved a long-term...
72

Study on Defects in SiC MOS Structures and Mobility-Limiting Factors of MOSFETs / SiC MOS構造における欠陥およびMOSFETの移動度支配要因に関する研究

Kobayashi, Takuma 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21110号 / 工博第4474号 / 新制||工||1695(附属図書館) / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 藤田 静雄, 教授 白石 誠司 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
73

UNDERSTANDING ELECTROCATALYTIC CO2 REDUCTION AND H2O OXIDATION ON TRANSITION METAL CATALYSTS FROM DENSITY FUNCTIONAL THEORY STUDY

Masood, Zaheer 01 December 2022 (has links)
A major contribution to global warming is CO2 emitted from the combustion of fossil fuels. Electrochemical processes can help to mitigate the elevated CO2 emissions through either the conversion of CO2 into value-added chemicals or the replacement of fossil fuels with clean fuels such as hydrogen produced from water oxidation. The present dissertation focuses on the mechanistic aspects of electrochemical processes. Electrochemical water oxidation is hindered by the low efficiency of oxygen evolution reaction (OER) at the anode whereas electrochemical reduction of CO2 (ERCO2) is hampered by high overpotentials and poor product selectivity. In this dissertation, we studied the catalytic activity of transition metal-based catalysts, including FeNi spinels, metal-oxide/copper, and d metal cyclam complexes, for both OER and ERCO2 using the density functional theory (DFT) computational approach.We report a combined effort of fabricating FeNi oxide catalysts and identifying the active component of the catalyst for OER. Our collaborators at the University of California, Santa Cruze fabricated a series of FeNi spinels-based materials including Ni(OH)Fe2O4(Cl), Ni(OH)Fe2O4, Fe(OH)Fe2O4(Cl), Fe(OH)Fe2O4, Ni(OH)O(Cl), Ni(OH)O and some show exceptional activity for OER. Combined experimental characterization and computational mechanistic study based on the computational hydrogen electrode (CHE) model revealed that Ni(OH)Fe2O4(Cl) is the active ensemble for exceptional OER performance. We also investigated CO2 reduction to C1 products at the metal-oxide/copper interfaces ((MO)4/Cu(100), M = Fe, Co and Ni) based on the CHE model. The effect of tuning metal-oxide/copper interfaces on product selectivity and limiting potential was clearly demonstrated. This study showed that the catalyst/electrode interface and solvent can be regulated to optimize product selectivity and lower the limiting potential for ERCO2. Applied potential affects the stability of species on the surface of the electrode. The proton-coupled electron transfer (PCET) equilibrium assumed in the CHE model does not capture the change in free energy under the influence of the applied potential. In contrast, the constant electrode potential (CEP) model captures changes in free energy due to applied potential, we applied the CEP model to ERCO2 and OER on (MO)4/Cu(100) and compared the results with those from the CHE model. The results demonstrate that the CHE and the CEP models predict different limiting potentials and product selectivity for ERCO2, but they predict similar limiting potentials for OER. The results demonstrate the importance of accounting for the applied potential effect in the study of more complex multi-step electrochemical processes. We also studied transition metal-based homogeneous catalysts for ERCO2. We examined the performance of transition metal(M) - cyclam(L) complexes as molecular catalysts for the reduction of CO2 to HCOO- and CO, focusing on the effect of changing the metal ions in cyclam on product selectivity (either HCOO- or CO), limiting potential and competitive hydrogen evolution reaction. Our results show that among the complexes, [LNi]2+ and [LPd]2+ can catalyze CO2 reduction to CO, and [LMo]2+ and [LW]3+ can reduce CO2 to HCOO-. Notably, [LMo]2+, [LW]3+, [LW]2+ and [LCo]2+ have a limiting potential less negative than -1.6 V and are based on earth-abundant elements, making them attractive for practical application. In summary, the dissertation demonstrates high-performance catalysts can be designed from earth-abundant transition metals for electrochemical processes that would alleviate the high CO2 level in the environment. On the other hand, completely reversing the increasing trend of CO2 level in the atmosphere requires a collective human effort.
74

Accuracy of Mechanical Torque-Limiting Devices for Dental Implants

L'Homme-Langlois, Emilie 02 October 2014 (has links)
No description available.
75

Role of Cell Membrane Permeability Barrier in Biodegradation Rates of Organic Compounds

Shrestha, Ankurman January 2017 (has links)
No description available.
76

The Design and Synthesis of Corannulene-Based Nanomaterial

Hurst, Angela L. 19 April 2010 (has links)
No description available.
77

Multipath limiting antenna design considerations for ground based pseudolite ranging sources

Dickman, Jeffrey January 2001 (has links)
No description available.
78

Hardenability Improvements and Rate-Limiting Reactions During Hot-Dip Galvanizing of High-Mn Dual-Phase Steels

Meguerian, Richard J. 09 1900 (has links)
<p> Intercritically annealed steels, such as dual-phase steels, have found widespread use in automotive structural components due to their high strength and ductility. Elements such as Mn, Al and Si, added to improve the mechanical properties are selectively oxidized during heat treatment and limit the ability of the alloy to be reactively wet during continuous hot-dip galvanizing. Subsequently, a limit has been placed on the amount of alloy which can be used if the steel is to be subsequently galvanized. The specifics of this limit have not been explored in detail, nor has the mechanism of decreased wettability been well demonstrated in the literature other than to say that the galvanizing reaction is limited by oxides on the surface.</p> <p> Using a force balance, it is shown that the presence of MnO on the surface of steels greatly reduces the wettability with a typical galvanizing bath (Zn-0.2wt%Al, Fe-saturated, 460°C). Furthermore, it was determined that this is caused by the additional and rate-limiting step of aluminothermic reduction of the oxide layer with the bath Al, required for subsequent inhibition layer formation. By using a low pO2 during annealing, the wettability was improved by reducing the thickness of the MnO layer when compared to intermediate and industrially common values of pO2. Using a high pO2 also resulted in improved wettability since the internal oxide which was formed did not reduce the wettability since it was not exposed to the bath alloy.</p> <p> Improvements in hardenability were also explored via dilatometry showing that the formation of bainite is delayed with increasing Mn content, as well as a decrease in transformation temperatures from γ during cooling (i.e. Ms and Bs). At ~5wt% Mn, only the the transformation to αM could be observed. This opens the door to higher strength, galvanized steels - as well as possibly galvanized martensitic steels.</p> / Thesis / Master of Applied Science (MASc)
79

Observability Analysis in Navigation Systems with an Underwater Vehicle Application

Gadre, Aditya Shrikant 28 February 2007 (has links)
Precise navigation of autonomous underwater vehicles (AUV) is one of the most important challenges in the realization of distributed and cooperative algorithms for marine applications. We investigate an underwater navigation technology that enables an AUV to compute its trajectory in the presence of unknown currents in real time and simultaneously estimate the currents, using range or distance measurements from a single known location. This approach is potentially useful for small AUVs which have severe volume and power constraints. The main contribution of this work is observability analysis of the proposed navigation system using novel approaches towards uniform observability of linear time-varying (LTV) systems. We utilize the notion of limiting systems in order to address uniform observability of LTV systems. Uniform observability of an LTV system can be studied by assessing finite time observability of its limiting systems. A new definition of uniform observability over a finite interval is introduced in order to address existence of an observer whose estimation error is bounded by an exponentially decaying function on the finite interval. We also show that for a class of LTV systems, uniform observability of a lower dimensional subsystem derived from an LTV system is sufficient for uniform observability of the LTV system. / Ph. D.
80

Smart Power Module for Distributed Sensor Power Network of an Unmanned Ground Vehicle

Roa, Christian Raphael 25 July 2014 (has links)
Energy efficiency is a driving factor in modern electronic design particularly in power conversion where conversion losses directly set the upper limit of system efficiency. A wide variety of commercially available DC-DC conversion elements have inefficiencies in the 90-97% range. The efficiency range of most common commercial-off-the-shelf (COTS) power supplies is 75-85%, highlighting the fact that COTS power supplies have not kept pace with efficiency improvements of modern conversion elements. Unmanned ground vehicles (UGVs) is an application where efficiency can be crucial in extending tight power budgets. In autonomous ground vehicles, geographic diversity with regard to sensor location is inherent because sensor orientation and placement are crucial to performance. Sensor power, therefore, is also distributed by nature of the devices being supplied. This thesis presents the design and evaluation of a smart power module used to implement a distributed power network in an autonomous ground vehicle. The module conversion element demonstrated an average efficiency of 96.7% for loads from 1-4A. Current monitoring and an adjustable output current limit were provided through a second circuit board within the same module enclosure. The module processing element sends periodic updates and receives commands over a CAN bus. The smart power modules successfully supply critical sensing and communication components in an operational autonomous ground vehicle. / Master of Science

Page generated in 0.0573 seconds