1 |
On an epidemic model given by a stochastic differential equationZararsiz, Zarife January 2009 (has links)
We investigate a certain epidemics model, with and without noise. Some parameter analysis is performed together with computer simulations. The model was presented in Iacus (2008).
|
2 |
On an epidemic model given by a stochastic differential equationZararsiz, Zarife January 2009 (has links)
<p>We investigate a certain epidemics model, with and without noise. Some parameter analysis is performed together with computer simulations. The model was presented in Iacus (2008).</p>
|
3 |
Validation and Inferential Methods for Distributional Form and ShapeMayorov, Kirill January 2017 (has links)
This thesis investigates some problems related to the form and shape of statistical distributions with the main focus on goodness of fit and bump hunting. A bump is a distinctive characteristic of distributional shape. A search for bumps, or bump hunting, in a probability density function (PDF) has long been an important topic in statistical research. We introduce a new definition of a bump which relies on the notion of the curvature of a planar curve. We then propose a new method for bump hunting which is based on a kernel density estimator of the unknown PDF. The method gives not only the number of bumps but also the location of their centers and base points. In quantitative risk applications, the selection of distributions that properly capture upper tail behavior is essential for accurate modeling. We study tests of distributional form, or goodness-of-fit (GoF) tests, that assess simple hypotheses, i.e., when the parameters of the hypothesized distribution are completely specified. From theoretical and practical perspectives, we analyze the limiting properties of a family of weighted Cramér-von Mises GoF statistics W2 with weight function psi(t)=1/(1-t)^beta (for beta<=2) which focus on the upper tail. We demonstrate that W2 has no limiting distribution. For this reason, we provide a normalization of W2 that leads to a non-degenerate limiting distribution. Further, we study W2 for composite hypotheses, i.e., when distributional parameters must be estimated from a sample at hand. When the hypothesized distribution is heavy-tailed, we examine the finite sample properties of W2 under the Chen-Balakrishnan transformation that reduces the original GoF test (the direct test) to a test for normality (the indirect test). In particular, we compare the statistical level and power of the pairs of direct and indirect tests. We observe that decisions made by the direct and indirect tests agree well, and in many cases they become independent as sample size grows. / Thesis / Doctor of Philosophy (PhD)
|
Page generated in 0.1207 seconds