• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 9
  • 5
  • 2
  • 1
  • Tagged with
  • 42
  • 42
  • 42
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Avaliação de desempenho de controladores preditivos multivariáveis

Santos, Rodrigo Ribeiro 11 November 2013 (has links)
In advanced process control, the Model Predictive Control (MPC) may be considered the most important innovation in recent years and the standard tool for industrial applications due to the fact that it keeps the plant operating in the constraints more profitable. However, like every control algorithm, the MPC after some time in operation rarely works as originally designed. Thus, to preserve the benefits of MPC systems for a long period of time, their performance needs to be monitored and evaluated during the operation. This task require the presence of reliable and effective tools to detect when the controller performance is below of the desirable, to define the need, or not, of recommissioning the system. Thus, the objective of this work is development of techniques for monitoring and evaluating the performance of multivariable predictive controllers, being developed two new tools: LQG benchmark Modified and IHMC benchmark. The results obtained from numerical simulations were satisfactory and consistent with the technical literature applied in the developments of the evaluators, which were used in the monitoring of the control system MPC of the oil-water-gas three-phase separation process, offering an appropriate solution and providing subsidies for implementations in real industrial systems. / Em controle avançado de processos, o controlador preditivo ou MPC (Model Predictive Control) pode ser considerado como a mais importante inovação dos últimos anos e a ferramenta padrão para aplicações industriais, devido ao fato do MPC manter a planta operando dentro das suas restrições de forma mais lucrativa. Entretanto, como todo algoritmo de controle, o MPC depois de algum tempo em operação dificilmente funciona como quando fora inicialmente projetado. Desta forma, com o objetivo de manter os benefícios dos sistemas MPC por um longo período de tempo, seu desempenho precisa ser monitorado e avaliado durante a operação. Esta tarefa requer a presença de ferramentas efetivas e confiáveis para detectar quando o desempenho do controlador estiver abaixo do desejável, para definir a necessidade, ou não, de um recomissionamento do sistema. Destarte, aborda-se neste trabalho o desenvolvimento de técnicas para monitoramento e avaliação de desempenho de controladores preditivos multivariáveis, sendo desenvolvidas duas novas ferramentas: LQG benchmark Modificado e IHMC benchmark. Os resultados obtidos a partir de simulações numéricas foram satisfatórios e coerentes com a literatura técnica aplicada no desenvolvimento dos avaliadores, os quais foram utilizados no monitoramento do sistema de controle MPC do processo de separação trifásica água-óleo-gás, oferecendo assim uma solução apropriada e fornecendo subsídios para implementações em sistemas industrias reais.
42

ON THE RATE-COST TRADEOFF OF GAUSSIAN LINEAR CONTROL SYSTEMS WITH RANDOM COMMUNICATION DELAY

Jia Zhang (13176651) 01 August 2022 (has links)
<p>    </p> <p>This thesis studies networked Gaussian linear control systems with random delays. Networked control systems is a popular topic these years because of their versatile applications in daily life, such as smart grid and unmanned vehicles. With the development of these systems, researchers have explored this area in two directions. The first one is to derive the inherent rate-cost relationship in the systems, that is the minimal transmission rate needed to achieve an arbitrarily given stability requirement. The other one is to design achievability schemes, which aim at using as less as transmission rate to achieve an arbitrarily given stability requirement. In this thesis, we explore both directions. We assume the sensor-to-controller channels experience independently and identically distributed random delays of bounded support. Our work separates into two parts. In the first part, we consider networked systems with only one sensor. We focus on deriving a lower bound, R_{LB}(D), of the rate-cost tradeoff with the cost function to be E{| <strong>x^</strong>T<strong>x </strong>|} ≤ D, where <strong>x </strong>refers to the state to be controlled. We also propose an achievability scheme as an upper bound, R_{UB}(D), of the optimal rate-cost tradeoff. The scheme uses lattice quantization, entropy encoder, and certainty-equivalence controller. It achieves a good performance that roughly requires 2 bits per time slot more than R_{LB}(D) to achieve the same stability level. We also generalize the cost function to be of both the state and the control actions. For the joint state-and-control cost, we propose the minimal cost a system can achieve. The second part focuses on to the covariance-based fusion scheme design for systems with multiple > 1 sensors. We notice that in the multi-sensor scenario, the outdated arrivals at the controller, which many existing fusion schemes often discard, carry additional information. Therefore, we design an implementable fusion scheme (CQE) which is the MMSE estimator using both the freshest and outdated information at the controller. Our experiment demonstrates that CQE out-performances the MMSE estimator using the freshest information (LQE) exclusively by achieving a 15% smaller average L2 norm using the same transmission rate. As a benchmark, we also derive the minimal achievable L2 norm, Dmin, for the multi-sensor systems. The simulation shows that CQE approaches Dmin significantly better than LQE. </p>

Page generated in 0.0918 seconds