• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancement of imagery from passive millimetre-wave systems for security scanning

Taylor, Christopher Trevor January 2015 (has links)
This thesis concerns methods to enhance current and explore future radiometric imaging systems for security screening. Its main focus is on the test and calibration procedures for the BorderWatch system – an established 33 GHz passive millimetre-wave imager developed by QinetiQ PLC as an outdoor security scanning portal for soft-sided heavy goods vehicles at ports of entry. The effects of the limited size of the sky background reflector of the operational system are addressed and modifications to mitigate these effects are proposed. Systematic diurnal and seasonal variations in the receiver output powers are characterised and strongly linked with variations in the physical temperature of the RF components. The proposed BorderWatch temperature calibration subsystem requires a reliable cold sky temperature reference point; the aim being to reduce the level of fixed pattern noise in present-day imagery and allow for post-processing methods requiring absolute temperature values. Cost considerations rule out independent millimetre-wave radiometers at each site so a proposed alternative is to use infra-red measurements as a proxy. A literature investigation is made into the millimetre-wave and infrared atmospheric opacities for a variety of meteorological conditions. The design, calibration and operation of a 35 GHz switching radiometer is described together with a comparison of the millimetre-wave radiometric brightness temperature measurements against the data from a low cost commercial infra-red sensor and from a nearby meteorological station. The results show an excellent correlation between the zenith sky temperatures in the infrared and millimetre-wave bands but only in clear sky conditions – as anticipated the presence of clouds affects the infra-red brightness distribution much more strongly than that of the millimetre-wave. Future security imagers may well incorporate interferometric arrays. An extensive simulation programme has been carried out to explore appropriate numbers of antennas and whether radio astronomy configurations and post-processing techniques can offer cost-effective routes to high image fidelity. The results of a quantitative analysis are promising and array configurations and techniques appropriate for potential future security imagers are suggested.
2

The effects of magmatic evolution,  crystallinity, and microtexture on the visible/near-infrared and  thermal-infrared spectra of volcanic rocks

Noel A Scudder (16649295) 01 August 2023 (has links)
<p>The natural chemical and physical variations that occur within volcanic rocks (petrology) provide critical insights into mantle and crust conditions on terrestrial bodies. Visible/near-infrared (VNIR; 0.3-2.5 µm) and thermal infrared (TIR; 5-50 µm) spectroscopy are the main tools available to remotely characterize these materials from satellites in orbit. However, the accuracy of petrologic information that can be gained from spectra when rocks exhibit complex variations in mineralogy, crystallinity, microtexture, and oxidation state occurring together in natural settings is not well constrained. Here, we compare the spectra of a suite of volcanic planetary analog rocks from the Three Sisters, OR to their mineralogy, chemistry, and microtexture from X-ray diffraction, X-ray fluorescence, and electron microprobe analysis. Our results indicate that TIR spectroscopy is an effective petrologic tool in such rocks for modeling bulk mineralogy, crystallinity, and mineral chemistry. Given a library with appropriate glass endmembers, TIR modeling can derive glass abundance with similar accuracy as other major mineral groups and provide first-order estimates of glass wt.% SiO2 in glass-rich samples, but cannot effectively detect variations in microtexture and minor oxide minerals. In contrast, VNIR spectra often yield non-unique mineralogic interpretations due to overlapping absorption bands from olivine, glass, and Fe-bearing plagioclase. In addition, we find that sub-micron oxides hosted in transparent matrix material that are common in fine-grained extrusive rocks can lower albedo and partially to fully suppress mafic absorption bands, leading to very different VNIR spectra in rocks with the same mineralogy and chemistry. Mineralogical interpretations from VNIR spectra should not be treated as rigorous petrologic indicators, but can supplement TIR-based petrology by providing unique constraints on oxide minerals, microtexture, and alteration processes.</p>

Page generated in 0.3927 seconds