• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CoCoS - Computation of Corner Singularities

Pester, Cornelia 06 September 2006 (has links) (PDF)
This is a documentation of the software package COCOS. The purpose of COCOS is the computation of corner singularities of elliptic equations in polyhedral corners and crack tips. COCOS provides a self-contained library for the generation of structured 2D finite element meshes, including various routines for mesh manipulation, as well as several algorithms for the solution of quadratic eigenvalue problems with Hamiltonian structure. These and further features will be described in this documentation.
2

The Laplace and the linear elasticity problems near polyhedral corners and associated eigenvalue problems

Meyer, Arnd, Pester, Cornelia 01 September 2006 (has links) (PDF)
The solutions to certain elliptic boundary value problems have singularities with a typical structure near polyhedral corners. This structure can be exploited to devise an eigenvalue problem whose solution can be used to quantify the singularities of the given boundary value problem. It is necessary to parametrize a ball centered at the corner. There are different possibilities for a suitable parametrization; from the numerical point of view, spherical coordinates are not necessarily the best choice. This is why we do not specify a parametrization in this paper but present all results in a rather general form. We derive the eigenvalue problems that are associated with the Laplace and the linear elasticity problems and show interesting spectral properties. Finally, we discuss the necessity of widely accepted symmetry properties of the elasticity tensor. We show in an example that some of these properties are not only dispensable, but even invalid, although claimed in many standard books on linear elasticity.
3

On the Convergence Factor in Multilevel Methods for Solving 3D Elasticity Problems

Jung, Michael, Todorov, Todor D. 01 September 2006 (has links) (PDF)
The constant gamma in the strengthened Cauchy-Bunyakowskii-Schwarz inequality is a basic tool for constructing of two-level and multilevel preconditioning matrices. Therefore many authors consider estimates or computations of this quantity. In this paper the bilinear form arising from 3D linear elasticity problems is considered on a polyhedron. The cosine of the abstract angle between multilevel finite element subspaces is computed by a spectral analysis of a general eigenvalue problem. Octasection and bisection approaches are used for refining the triangulations. Tetrahedron, pentahedron and hexahedron meshes are considered. The dependence of the constant $\gamma$ on the Poisson ratio is presented graphically.
4

CoCoS - Computation of Corner Singularities

Pester, Cornelia 06 September 2006 (has links)
This is a documentation of the software package COCOS. The purpose of COCOS is the computation of corner singularities of elliptic equations in polyhedral corners and crack tips. COCOS provides a self-contained library for the generation of structured 2D finite element meshes, including various routines for mesh manipulation, as well as several algorithms for the solution of quadratic eigenvalue problems with Hamiltonian structure. These and further features will be described in this documentation.
5

The Laplace and the linear elasticity problems near polyhedral corners and associated eigenvalue problems

Meyer, Arnd, Pester, Cornelia 01 September 2006 (has links)
The solutions to certain elliptic boundary value problems have singularities with a typical structure near polyhedral corners. This structure can be exploited to devise an eigenvalue problem whose solution can be used to quantify the singularities of the given boundary value problem. It is necessary to parametrize a ball centered at the corner. There are different possibilities for a suitable parametrization; from the numerical point of view, spherical coordinates are not necessarily the best choice. This is why we do not specify a parametrization in this paper but present all results in a rather general form. We derive the eigenvalue problems that are associated with the Laplace and the linear elasticity problems and show interesting spectral properties. Finally, we discuss the necessity of widely accepted symmetry properties of the elasticity tensor. We show in an example that some of these properties are not only dispensable, but even invalid, although claimed in many standard books on linear elasticity.
6

On the Convergence Factor in Multilevel Methods for Solving 3D Elasticity Problems

Jung, Michael, Todorov, Todor D. 01 September 2006 (has links)
The constant gamma in the strengthened Cauchy-Bunyakowskii-Schwarz inequality is a basic tool for constructing of two-level and multilevel preconditioning matrices. Therefore many authors consider estimates or computations of this quantity. In this paper the bilinear form arising from 3D linear elasticity problems is considered on a polyhedron. The cosine of the abstract angle between multilevel finite element subspaces is computed by a spectral analysis of a general eigenvalue problem. Octasection and bisection approaches are used for refining the triangulations. Tetrahedron, pentahedron and hexahedron meshes are considered. The dependence of the constant $\gamma$ on the Poisson ratio is presented graphically.

Page generated in 0.1936 seconds