1 |
Multiplicative linear type theoriesKoh, Thong Wei January 1998 (has links)
No description available.
|
2 |
The geometry of interaction as a theory of cut elimination with structure-sharingEastaughffe, Katherine A. January 1995 (has links)
No description available.
|
3 |
A linear logic approach to RESTful web service modelling and compositionZhao, Xia January 2013 (has links)
RESTful Web Services are gaining increasing attention from both the service and the Web communities. The rising number of services being implemented and made available on the Web is creating a demand for modelling techniques that can abstract REST design from the implementation in order better to specify, analyse and implement large-scale RESTful Web systems. It can also help by providing suitable RESTful Web Service composition methods which can reduce costs by effi ciently re-using the large number of services that are already available and by exploiting existing services for complex business purposes. This research considers RESTful Web Services as state transition systems and proposes a novel Linear Logic based approach, the first of its kind, for both the modelling and the composition of RESTful Web Services. The thesis demonstrates the capabilities of resource-sensitive Linear Logic for modelling five key REST constraints and proposes a two-stage approach to service composition involving Linear Logic theorem proving and proof-as-process based on the π-calculus. Whereas previous approaches have focused on each aspect of the composition of RESTful Web Services individually (e.g. execution or high-level modelling), this work bridges the gap between abstract formal modelling and application-level execution in an efficient and effective way. The approach not only ensures the completeness and correctness of the resulting composed services but also produces their process models naturally, providing the possibility to translate them into executable business languages. Furthermore, the research encodes the proposed modelling and composition method into the Coq proof assistant, which enables both the Linear Logic theorem proving and the π-calculus extraction to be conducted semi-automatically. The feasibility and versatility studies performed in two disparate user scenarios (shopping and biomedical service composition) show that the proposed method provides a good level of scalability when the numbers of services and resources grow.
|
4 |
Substructural Logical SpecificationsSimmons, Robert J. 14 November 2012 (has links)
A logical framework and its implementation should serve as a flexible tool for specifying, simulating, and reasoning about formal systems. When the formal systems we are interested in exhibit state and concurrency, however, existing logical frameworks fall short of this goal. Logical frameworks based on a rewriting interpretation of substructural logics, ordered and linear logic in particular, can help. To this end, this dissertation introduces and demonstrates four methodologies for developing and using substructural logical frameworks for specifying and reasoning about stateful and concurrent systems.
Structural focalization is a synthesis of ideas from Andreoli’s focused sequent calculi and Watkins’s hereditary substitution. We can use structural focalization to take a logic and define a restricted form of derivations, the focused derivations, that form the basis of a logical framework. We apply this methodology to define SLS, a logical framework for substructural logical specifications, as a fragment of ordered linear lax logic.
Logical correspondence is a methodology for relating and inter-deriving different styles of programming language specification in SLS. The styles we connect range from very high-level specification styles like natural semantics, which do not fully specify the control structure of programs, to low-level specification styles like destination-passing, which provide detailed control over concurrency and control flow. We apply this methodology to systematically synthesize a low-level destination-passing semantics for a Mini-ML language extended with stateful and concurrent primitives. The specification is mostly high-level except for the relatively few rules that actually deal with concurrency.
Linear logical approximation is a methodology for deriving program analyses by performing abstract analysis on the SLS encoding of the language’s operational semantics. We demonstrate this methodology by deriving a control flow analysis and an alias analysis from suitable programming language specifications.
Generative invariants are a powerful generalization of both context-free grammars and LF’s regular worlds that allow us to express invariants of SLS specifications in SLS.We show that generative invariants can form the basis of progress-andpreservation- style reasoning about programming languages encoded in SLS.
|
5 |
Generalization of Bounded Linear Logic and its Categorical Semantics / 有界線形論理の一般化とその圏論的意味論Fukihara, Yoji 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第22980号 / 理博第4657号 / 新制||理||1669(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 長谷川 真人, 准教授 照井 一成, 准教授 河村 彰星 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
6 |
Reflexive spaces of smooth functions : a logical account of linear partial differential equations / Espaces réflexifs de fonctions lisses : un compte rendu logique des équations aux dérivées partielles linéairesKerjean, Marie 19 October 2018 (has links)
La théorie de la preuve se développe depuis la correspondance de Curry-Howard suivant deux sources d’inspirations : les langages de programmation, pour lesquels elle agit comme une théorie des types de données, et l’étude sémantique des preuves. Cette dernière consiste à donner des modèles mathématiques pour les comportements des preuves/programmes. En particulier, la sémantique dénotationnelle s’attache à interpréter les deux-ci comme des fonctions entre des types, et permet en retour d’affiner notre compréhension des preuves/programmes. La logique linéaire (LL), introduite par Girard, donne une interprétation logique des notions d’algèbre linéaire, quand la logique linéaire différentielle (DiLL), introduite par Ehrhard et Regnier, permet une compréhension logique de la notion de différentielle.Cette thèse s’attache à renforcer la correspondance sémantique entre théorie de la preuve et analyse fonctionnelle, en insistant sur le caractère involutif de la négation dans DiLL.La première partie consiste en un rappel des notions de linéarité, polarisation et différentiation en théorie de la preuve, ainsi qu’un exposé rapide de théorie des espaces vectoriels topologiques. La deuxième partie donne deux modèles duaux de la logique linéaire différentielle, interprétant la négation d’une formule respectivement par le dual faible et le dual de Mackey. Quand la topologie faible ne permet qu’une interprétation discrète des preuves sous forme de série formelle, la topologie de Mackey nous permet de donner un modèle polarisé et lisse de DiLL, et de raffiner des résultats précédemment obtenus par Blute, Dabrowski, Ehrhard et Tasson. Enfin, la troisième partie de cette thèse s’attache à interpréter les preuves de DiLL par des distributions à support compact. Nous donnons un modèle polarisé de DiLL où les formules négatives sont interprétés par des espaces Fréchet Nucléaires. Nous montrons que enfin la résolution des équations aux dérivées partielles linéaires à coefficients constants obéit à une syntaxe qui généralise celle de DiLL, que nous détaillons. / Around the curry-coward correspondence, proof-theory has grown along two distinct fields : the theory of programming languages, for which formulas acts as data types, and the semantic study of proofs. The latter consists in giving mathematical models of proofs and programs. In particular, denotational semantics distinguishes data types which serves as input or output of programs, and allows in return for a finer understanding of proofs and programs. Linear Logic (LL) gives a logical interpretation of the basic notions from/of linear algebra, while Differential Linear Logic allows for a logical understanding of differentiation. This manuscript strengthens the link between proof-theory and functional analysis, and highlights the role of linear involutive negation in DiLL. The first part of this thesis consists in a quick overview of prerequisites on the notions of linearity, polarisation and differentiation in proof-theory, and gives the necessary background in the theory of locally convex topological vector spaces. The second part uses two classic topologies on the dual of a topological vector space and gives two models of DiLL: the weak topology allows only for a discrete interpretation of proofs through formal power series, while the Mackey topology on the dual allows for a smooth and polarised model of DiLL. Finally, the third part interprets proofs of DiLL by distributions. We detail a polarized model of DiLL in which negatives are Fréchet Nuclear spaces, and proofs are distributions with compact support. We also show that solving linear partial differential equations with constant coefficients can be typed by a syntax similar to the one of DiLL, which we detail.
|
7 |
Monoidal Topology on Linear BicategoriesVandeven, Thomas 02 October 2023 (has links)
Extending endofunctors on the category of sets and functions to the category of sets and relations requires one to introduce a certain amount of laxness. This in turn requires us to consider bicategories rather than ordinary categories. The subject of lax extensions of Set-based functors is one of the fundamental components of monoidal topology, an active area of research in categorical algebra.
The recent theory of linear bicategories, due to Cockett, Koslowski and Seely, is an extension of the usual notion of bicategory to include a second composition in a way analogous to the two connectives of multiplicative linear logic. It turns out that the category of sets and relations has a second composition making it a linear bicategory. The goal of this thesis is first to define the notion of lax extension of Set-based functors to linear bicategories, and then demonstrate crucial properties of our definition.
|
8 |
Combinatorial arguments for linear logic full completenessSteele, Hugh Paul January 2013 (has links)
We investigate categorical models of the unit-free multiplicative and multiplicative-additive fragments of linear logic by representing derivations as particular structures known as dinatural transformations. Suitable categories are considered to satisfy a property known as full completeness if all such entities are the interpretation of a correct derivation. It is demonstrated that certain Hyland-Schalk double glueings [HS03] are capable of transforming large numbers of degenerate models into more accurate ones. Compact closed categories with finite biproducts possess enough structure that their morphisms can be described as forms of linear arrays. We introduce the notion of an extended tensor (or ‘extensor’) over arbitrary semirings, and show that they uniquely describe arrows between objects generated freely from the tensor unit in such categories. It is made evident that the concept may be extended yet further to provide meaningful decompositions of more general arrows. We demonstrate how the calculus of extensors makes it possible to examine the combinatorics of certain double glueing constructions. From this we show that the Hyland-Tan version [Tan97], when applied to compact closed categories satisfying a far weaker version of full completeness, produces genuine fully complete models of unit-free multiplicative linear logic. Research towards the development of a full completeness result for the multiplicative-additive fragment is detailed. The proofs work for categories of finite arrays over certain semirings under both the Hyland-Tan and Schalk [Sch04] constructions. We offer a possible route to finishing this proof. An interpretation of these results with respect to linear logic proof theory is provided, and possible further research paths and generalisations are discussed.
|
9 |
Concurrency, references and linear logic / Concurrences, Références et Logique LinéaireHamdaoui, Yann 25 September 2018 (has links)
Le sujet de cette thèse est l’étude de l’encodage des références et de la concurrence dans la Logique Linéaire. Notre motivation est de montrer que la Logique Linéaire est capable d’encoder des effets de bords, et pourrait ainsi servir comme une cible de compilation pour des langages fonctionnels qui soit à la fois viable, formalisée et largement étudiée. La notion clé développée dans cette thèse est celle de zone de routage. C’est une famille de réseaux de preuve qui correspond à un fragment de la logique linéaire différentielle, et permet d’implémenter différentes primitives de communication. Nous les définissons et étudions leur théorie. Nous illustrons ensuite leur expressivité en traduisant un λ-calcul avec concurrence, références et réplication dans un fragment des réseaux différentiels. Pour ce faire, nous introduisons un langage semblable au λ-calcul concurrent d’Amadio, mais avec des substitutions explicites à la fois pour les variables et pour les références. Nous munissons ce langage d’un système de types et d’effets, et prouvons la normalisation forte des termes bien typés avec une technique qui combine la réductibilité et une nouvelle technique interactive. Ce langage nous permet de prouver un théorème de simulation, et un théorème d’adéquation pour la traduction proposée. / The topic of this thesis is the study of the encoding of references andconcurrency in Linear Logic. Our perspective is to demonstrate the capabilityof Linear Logic to encode side-effects to make it a viable, formalized and wellstudied compilation target for functional languages in the future. The keynotion we develop is that of routing areas: a family of proof nets whichcorrespond to a fragment of differential linear logic and which implementscommunication primitives. We develop routing areas as a parametrizable deviceand study their theory. We then illustrate their expressivity by translating aconcurrent λ-calculus featuring concurrency, references and replication to afragment of differential nets. To this purpose, we introduce a language akin toAmadio’s concurrent λ-calculus, but with explicit substitutions for bothvariables and references. We endow this language with a type and effect systemand we prove termination of well-typed terms by a mix of reducibility and anew interactive technique. This intermediate language allows us to prove asimulation and an adequacy theorem for the translation
|
10 |
Coherence Spaces and Uniform Continuity / 整合空間と一様連続性Matsumoto, Kei 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20157号 / 理博第4242号 / 新制||理||1610(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 照井 一成, 教授 岡本 久, 教授 長谷川 真人 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
Page generated in 0.0478 seconds