• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 13
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identificação de substâncias não intencionalmente adicionadas (NIAS) de PELBD expostas a envelhecimento natural e acelerado visando sua utilização em embalagens de alimentos

Agarrallua, Marcio Renato Àvila January 2015 (has links)
A indústria alimentícia utiliza variados materiais para embalagens, sendo o polietileno de baixa densidade linear (PELBD) um dos materiais de maior importância, por possuir características únicas e adequadas à produção de embalagens. A geração de espécies químicas em embalagens de alimentos vem sendo foco de estudos no mundo. Este controle de compostos é denominado como estudo de Substâncias Não Intencionalmente Adicionadas (NIAS) e tem sua importância justificada pela preocupação com a saúde humana devido à capacidade de contaminação do alimento embalado. Para este estudo foram escolhidas duas resinas PELBD amplamente aplicadas na produção de embalagens alimentícias, analisadas na forma de pellets. As amostras foram nomeadas como PELBD1 e PELBD2 e analisadas antes e após exposição natural e acelerada (estufa a 50°C) de um, dois e três meses. Ambas apresentaram grande aumento no número de NIAS detectadas por Cromatografia Gasosa com detecção de Massas (GC-MS) após envelhecimentos, quando comparadas à resina virgem, chegando a 1100% em PELBD1 e 100% em PELBD2, com surgimento de substâncias oxigenadas e tóxicas. O aditivo antioxidante ativo foi sendo consumido e analisado via Cromatografia Líquida de Alta Eficiência (HPLC) ao longo das exposições, confirmando os efeitos do envelhecimento. Através do Infravermelho por transformada de Fourier (FTIR) foi verificada degradação inicial em PELBD1 exposto por três meses à estufa. Porém, até mesmo em períodos menores de exposição natural, a formação de grupos cromóforos foi comprovada pela análise de cor, onde houve pequeno e gradual aumento do amarelecimento e diminuição da brancura principalmente em PELBD1. Por Cromatografia de Permeação à Gel (GPC), as amostras apresentaram pequena tendência para diminuição de M̅z. Já nas análises de Reometria Rotacional com variação de Frequência (DSR), Índice de Fluidez (IF) e Calorimetria Exploratória Diferencial (DSC), foram observadas mínimas tendências de degradação. Pode-se concluir a partir destes resultados que a maior degradação e produção de NIAS ocorreram em ambiente acelerado. Esta pesquisa trouxe grandes contribuições para futuros trabalhos que envolvam o estudo de NIAS e suas condições de formação. / The food industry uses various packaging materials being linear low density polyethylene (LLDPE) one of the most important materials, have unique features suitable for the production and packaging. The generation of chemical species in food packages has been the focus of research in the world. This control compounds is referred to as study Non-Intentionally Added Substances (NIAS) and has its importance justified by concern human health because of capacity contamination the food packaging. For this study it was chosen two LLDPE resins widely applied in the production of food packaging, analyzed in the form of pellets. The samples were named as PELBD1 and PELBD2 and analyzed before and after natural and accelerated exposure (oven at 50°C) of a two and three months. Both showed huge increase in the number of NIAS detected by Gas Chromatography with Mass detection (GC-MS) after ageing, when compared to virgin resin, reaching of 1100% in PELBD1 and 100% in PELBD2 with the appearance of oxygen substances and toxic substances. The active antioxidant additive was being consumed and analyzed via High-Performance Liquid Chromatography (HPLC), during the exposures, confirming the effects of ageing. For Fourier Transform Infrared (FTIR) was observed in initial degradation PELBD1 exposed for three months in an oven. However, even at under natural exposure periods, the formation of chromophoric groups were confirmed by analysis of color where there was a slight and gradual increase in yellowing and brightness decreased mainly PELBD1. For the Gel Permeation Chromatography (GPC), the samples showed a slight tendency to decrease M̅z. Already in the analysis of Rheometry Rotational Varying Frequency (DSR), Melt Flow Index (MFI) and Differential Scanning Calorimetry (DSC), were observed minimum trends of degradation. It can concluded from these results that the greatest degradation and NIAS production occurred in an accelerated environment. This research has brought great contributions to future work involving the study of NIAS and their conditions of training.
2

A new composite material consisting of flax fibers, recycled tire rubber and thermoplastic

Fung, Jimmy Chi-Ming 19 November 2009
Canadian grown oilseed flax is known for its oils that are used for industrial products. The flax fiber may also have a use as a potential replacement for synthetic fibers as reinforcement in plastic composites. It can also be utilized as a cost effective and environmentally acceptable supplement in the biodegradable composites. Tire rubber is a complex material which does not decompose naturally. As a result, many researchers have been trying to develop new applications for recycling scrap tires. The conversion of flax straw and scrap tire into a profitable product may benefit the agricultural economy, tire recycling market, and our environment. The main goal of this research was to develop a biocomposite material containing recycled ground tire rubber (GTR), untreated flax fiber, and linear low-density polyethylene (LLDPE).<p> In this study, the new biocomposite material was successfully prepared from flax fiber/shives, GTR, and LLDPE through extrusion and compression molding processes. The composites were compounded through a single-screw extruder. Then the pelletized extrudates were hot pressed into the final biocomposites. The properties of the flax fiber-GTR-LLDPE biocomposites were defined by using tearing, tensile, water absorption, hardness, and differential scanning calorimetry (DSC) tests. The effects of the independent variables (flax fiber content and GTR-LLDPE ratio) on each of the dependent variables (tear strength from tearing test, tensile yield strength and Youngs modulus from tensile test, and weight increase from water absorption test) were modeled. The properties of the composites can be predicted by using the mathematical model with known flax fiber content and GTR-LLDPE ratio.<p> The tensile yield strength and stiffness of the biocomposite were improved with the addition of flax fiber. The optimal composition of the biocomposite material (with strongest tensile yield strength or highest Youngs modulus) was calculated by using the model equations. The maximum yield strength was found to exist for a flax fiber content of 10.7% in weight and GTR-LLDPE ratio of one. The largest Youngs modulus was found for a fiber content of 17.7% by weight and the same GTR-LLDPE ratio. Both of these fiber contents were less than the amount that would give a composite with a 2% weight increase in water absorption.
3

Identificação de substâncias não intencionalmente adicionadas (NIAS) de PELBD expostas a envelhecimento natural e acelerado visando sua utilização em embalagens de alimentos

Agarrallua, Marcio Renato Àvila January 2015 (has links)
A indústria alimentícia utiliza variados materiais para embalagens, sendo o polietileno de baixa densidade linear (PELBD) um dos materiais de maior importância, por possuir características únicas e adequadas à produção de embalagens. A geração de espécies químicas em embalagens de alimentos vem sendo foco de estudos no mundo. Este controle de compostos é denominado como estudo de Substâncias Não Intencionalmente Adicionadas (NIAS) e tem sua importância justificada pela preocupação com a saúde humana devido à capacidade de contaminação do alimento embalado. Para este estudo foram escolhidas duas resinas PELBD amplamente aplicadas na produção de embalagens alimentícias, analisadas na forma de pellets. As amostras foram nomeadas como PELBD1 e PELBD2 e analisadas antes e após exposição natural e acelerada (estufa a 50°C) de um, dois e três meses. Ambas apresentaram grande aumento no número de NIAS detectadas por Cromatografia Gasosa com detecção de Massas (GC-MS) após envelhecimentos, quando comparadas à resina virgem, chegando a 1100% em PELBD1 e 100% em PELBD2, com surgimento de substâncias oxigenadas e tóxicas. O aditivo antioxidante ativo foi sendo consumido e analisado via Cromatografia Líquida de Alta Eficiência (HPLC) ao longo das exposições, confirmando os efeitos do envelhecimento. Através do Infravermelho por transformada de Fourier (FTIR) foi verificada degradação inicial em PELBD1 exposto por três meses à estufa. Porém, até mesmo em períodos menores de exposição natural, a formação de grupos cromóforos foi comprovada pela análise de cor, onde houve pequeno e gradual aumento do amarelecimento e diminuição da brancura principalmente em PELBD1. Por Cromatografia de Permeação à Gel (GPC), as amostras apresentaram pequena tendência para diminuição de M̅z. Já nas análises de Reometria Rotacional com variação de Frequência (DSR), Índice de Fluidez (IF) e Calorimetria Exploratória Diferencial (DSC), foram observadas mínimas tendências de degradação. Pode-se concluir a partir destes resultados que a maior degradação e produção de NIAS ocorreram em ambiente acelerado. Esta pesquisa trouxe grandes contribuições para futuros trabalhos que envolvam o estudo de NIAS e suas condições de formação. / The food industry uses various packaging materials being linear low density polyethylene (LLDPE) one of the most important materials, have unique features suitable for the production and packaging. The generation of chemical species in food packages has been the focus of research in the world. This control compounds is referred to as study Non-Intentionally Added Substances (NIAS) and has its importance justified by concern human health because of capacity contamination the food packaging. For this study it was chosen two LLDPE resins widely applied in the production of food packaging, analyzed in the form of pellets. The samples were named as PELBD1 and PELBD2 and analyzed before and after natural and accelerated exposure (oven at 50°C) of a two and three months. Both showed huge increase in the number of NIAS detected by Gas Chromatography with Mass detection (GC-MS) after ageing, when compared to virgin resin, reaching of 1100% in PELBD1 and 100% in PELBD2 with the appearance of oxygen substances and toxic substances. The active antioxidant additive was being consumed and analyzed via High-Performance Liquid Chromatography (HPLC), during the exposures, confirming the effects of ageing. For Fourier Transform Infrared (FTIR) was observed in initial degradation PELBD1 exposed for three months in an oven. However, even at under natural exposure periods, the formation of chromophoric groups were confirmed by analysis of color where there was a slight and gradual increase in yellowing and brightness decreased mainly PELBD1. For the Gel Permeation Chromatography (GPC), the samples showed a slight tendency to decrease M̅z. Already in the analysis of Rheometry Rotational Varying Frequency (DSR), Melt Flow Index (MFI) and Differential Scanning Calorimetry (DSC), were observed minimum trends of degradation. It can concluded from these results that the greatest degradation and NIAS production occurred in an accelerated environment. This research has brought great contributions to future work involving the study of NIAS and their conditions of training.
4

Identificação de substâncias não intencionalmente adicionadas (NIAS) de PELBD expostas a envelhecimento natural e acelerado visando sua utilização em embalagens de alimentos

Agarrallua, Marcio Renato Àvila January 2015 (has links)
A indústria alimentícia utiliza variados materiais para embalagens, sendo o polietileno de baixa densidade linear (PELBD) um dos materiais de maior importância, por possuir características únicas e adequadas à produção de embalagens. A geração de espécies químicas em embalagens de alimentos vem sendo foco de estudos no mundo. Este controle de compostos é denominado como estudo de Substâncias Não Intencionalmente Adicionadas (NIAS) e tem sua importância justificada pela preocupação com a saúde humana devido à capacidade de contaminação do alimento embalado. Para este estudo foram escolhidas duas resinas PELBD amplamente aplicadas na produção de embalagens alimentícias, analisadas na forma de pellets. As amostras foram nomeadas como PELBD1 e PELBD2 e analisadas antes e após exposição natural e acelerada (estufa a 50°C) de um, dois e três meses. Ambas apresentaram grande aumento no número de NIAS detectadas por Cromatografia Gasosa com detecção de Massas (GC-MS) após envelhecimentos, quando comparadas à resina virgem, chegando a 1100% em PELBD1 e 100% em PELBD2, com surgimento de substâncias oxigenadas e tóxicas. O aditivo antioxidante ativo foi sendo consumido e analisado via Cromatografia Líquida de Alta Eficiência (HPLC) ao longo das exposições, confirmando os efeitos do envelhecimento. Através do Infravermelho por transformada de Fourier (FTIR) foi verificada degradação inicial em PELBD1 exposto por três meses à estufa. Porém, até mesmo em períodos menores de exposição natural, a formação de grupos cromóforos foi comprovada pela análise de cor, onde houve pequeno e gradual aumento do amarelecimento e diminuição da brancura principalmente em PELBD1. Por Cromatografia de Permeação à Gel (GPC), as amostras apresentaram pequena tendência para diminuição de M̅z. Já nas análises de Reometria Rotacional com variação de Frequência (DSR), Índice de Fluidez (IF) e Calorimetria Exploratória Diferencial (DSC), foram observadas mínimas tendências de degradação. Pode-se concluir a partir destes resultados que a maior degradação e produção de NIAS ocorreram em ambiente acelerado. Esta pesquisa trouxe grandes contribuições para futuros trabalhos que envolvam o estudo de NIAS e suas condições de formação. / The food industry uses various packaging materials being linear low density polyethylene (LLDPE) one of the most important materials, have unique features suitable for the production and packaging. The generation of chemical species in food packages has been the focus of research in the world. This control compounds is referred to as study Non-Intentionally Added Substances (NIAS) and has its importance justified by concern human health because of capacity contamination the food packaging. For this study it was chosen two LLDPE resins widely applied in the production of food packaging, analyzed in the form of pellets. The samples were named as PELBD1 and PELBD2 and analyzed before and after natural and accelerated exposure (oven at 50°C) of a two and three months. Both showed huge increase in the number of NIAS detected by Gas Chromatography with Mass detection (GC-MS) after ageing, when compared to virgin resin, reaching of 1100% in PELBD1 and 100% in PELBD2 with the appearance of oxygen substances and toxic substances. The active antioxidant additive was being consumed and analyzed via High-Performance Liquid Chromatography (HPLC), during the exposures, confirming the effects of ageing. For Fourier Transform Infrared (FTIR) was observed in initial degradation PELBD1 exposed for three months in an oven. However, even at under natural exposure periods, the formation of chromophoric groups were confirmed by analysis of color where there was a slight and gradual increase in yellowing and brightness decreased mainly PELBD1. For the Gel Permeation Chromatography (GPC), the samples showed a slight tendency to decrease M̅z. Already in the analysis of Rheometry Rotational Varying Frequency (DSR), Melt Flow Index (MFI) and Differential Scanning Calorimetry (DSC), were observed minimum trends of degradation. It can concluded from these results that the greatest degradation and NIAS production occurred in an accelerated environment. This research has brought great contributions to future work involving the study of NIAS and their conditions of training.
5

Controlled Release of Natural Antioxidants from Polymer Food Packaging by Molecular Encapsulation with Cyclodextrins

Koontz, John L. 23 April 2008 (has links)
Synthetic antioxidants have traditionally been added directly to food products in a single initial dose to protect against oxidation of lipids and generation of free radicals. Natural antioxidants have been shown to undergo loss of activity and become prooxidants at high concentrations; therefore, a need exists to develop active packaging which can gradually deliver antioxidants in a controlled manner. The objectives of this research were to (1) form and characterize cyclodextrin inclusion complexes with the natural antioxidants, alpha-tocopherol and quercetin, (2) incorporate cyclodextrin inclusion complexes of natural antioxidants into linear low density polyethylene (LLDPE), and (3) measure the release kinetics of inclusion complexes of natural antioxidants from LLDPE into a model food system. Cyclodextrin inclusion complexes of alpha-tocopherol and quercetin were formed by the coprecipitation method and characterized in the solid state by NMR, IR spectroscopy, and thermal analyses. Solid inclusion complex products of alpha-tocopherol:beta-cyclodextrin and quercetin:gamma-cyclodextrin had molar ratios of 1.7:1 as determined by UV spectrophotometry, which were equivalent to 18.1% (w/w) alpha-tocopherol and 13.0% (w/w) quercetin. Free and cyclodextrin complexed antioxidant additives were compounded with a twin-screw mixer into two LLDPE resin types followed by compression molding into films. Release of alpha-tocopherol and quercetin from LLDPE films into coconut oil at 30 °C was quantified by HPLC during 4 weeks of storage. The total release of alpha-tocopherol after 4 weeks was 70% from the free form and 8% from the complexed form averaged across both LLDPE resins. The mechanism by which alpha-tocopherol was released was modified due to its encapsulation inside the beta-cyclodextrin cavity within the LLDPE matrix as indicated by its diffusion coefficient decreasing by two orders of magnitude. Molecular encapsulation of natural antioxidants using cyclodextrins may be used as a controlled release mechanism within polymer food packaging to gradually deliver an effective antioxidant concentration to a food product, thereby, limiting oxidation, maintaining nutritional quality, and extending shelf life. / Ph. D.
6

The effect of molecular composition on the properties of linear low density polyethylene

Keulder, L. 03 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2008. / In this study linear low density polyethylene (LLDPE), a copolymer consisting of ethylene and 1-butene, was fractionated by the use of temperature rising elution fractionation (TREF). These fractions were then analyzed by crystallisation analysis fractionation, 13C NMR, high temperature size exclusion chromatography and DSC. The molecular distribution of the polymer was investigated. It was found that the polymer had a very broad distribution in its chemical composition. From these results it was also clear that the catalysts used for the polymerisation consist out of different active sites, producing chains with different molecular architecture. Subsequently the polymer was fractionated again by TREF and certain fractions were removed and the remaining material recombined. The removed fractions and recombined material were analyzed by 13C NMR, high temperature size exclusion chromatography, DSC and DMA. The results were compared with the bulk material and from this we could conclude the influence of the fractions removed on the material properties. This gave us more information on the influence of the chemical structure of the polymer on its mechanical properties. It was clear that by removing certain fractions with a certain chemical composition, the properties of the polymer are significantly influenced.
7

Ternary Nanocomposites Of Low Density,high Density And Linear Low Density Polyethylenes With The Compatibilizers E-ma_gma And E-ba-mah

Isik Coskunses, Fatma 01 June 2011 (has links) (PDF)
The effects of polyethylene, (PE), type, compatibilizer type and organoclay type on the morphology, rheological, thermal, and mechanical properties of ternary low density polyethylene (LDPE), high density polyethylene (HDPE), and linear low density polyethylene (LLDPE), matrix nanocomposites were investigated in this study. Ethylene &ndash / Methyl acrylate &ndash / Glycidyl methacrylate terpolymer (E-MAGMA) and Ethylene &ndash / Butyl acrylate- Maleic anhydrate terpolymer (E-BA-MAH) were used as the compatibilizers. The organoclays selected for the study were Cloisite 30B and Nanofil 8. Nanocomposites were prepared by means of melt blending via co-rotating twin screw extrusion process. Extruded samples were injection molded to be used for material characterization tests. Optimum amounts of ingredients of ternary nanocomposites were determined based on to the mechanical test results of binary blends of PE/Compatibilizer and binary nanocomposites of PE/Organoclay. Based on the tensile test results, the optimum contents of compatibilizer and organoclay were determined as 5 wt % and 2 wt %, respectively. XRD and TEM analysis results indicated that intercalated and partially exfoliated structures were obtained in the ternary nanocomposites. In these nanocomposites E-MA-GMA compatibilizer produced higher d-spacing in comparison to E-BA-MAH, owing to its higher reactivity. HDPE exhibited the highest basal spacing among all the nanocomposite types with E-MA-GMA/30B system. Considering the polymer type, better dispersion was achieved in the order of LDPE&lt / LLDPE&lt / HDPE, owing to the linearity of HDPE, and short branches of LLDPE. MFI values were decreased by the addition of compatibilizer and organoclay to the matrix polymers. Compatibilizers imparted the effect of sticking the polymer blends on the walls of test apparatus, and addition of organoclay showed the filler effect and increased the viscosity. DSC analysis showed that addition of compatibilizer or organoclay did not significantly affect the melting behavior of the nanocomposites. Degree of crystallinity of polyethylene matrices decreased with organoclay addition. Nanoscale organoclays prevented the alignment of polyethylene chains and reduced the degree of crystallinity. Ternary nanocomposites had improved tensile properties. Effect of compatibilizer on property enhancement was observed in mechanical results. Tensile strength and Young&rsquo / s modulus of nanocomposites increased significantly in the presence of compatibilizers.
8

Purification And Modification Of Bentonite And Its Use In Polypropylene And Linear Low Density Polyethylene Matrix Nanocomposites

Tijen, Seyidoglu 01 July 2010 (has links) (PDF)
The potential use of Resadiye/Tokat bentonite as a reinforcement in polypropylene (PP) and linear low density polyethylene (LLDPE) polymer matrix nanocomposites filler was investigated. At first, organoclays (OC) were prepared by cation exchange reaction (CER) between the raw bentonite (RB) and three quaternary ammonium salts with long alkyl tails (QA): hexadecyl trimethyl ammonium bromide [HMA] [Br], tetrabutyl ammonium tetrafluoroborate [TBA] [BF4], tetrakisdecyl ammonium bromide [TKA] [Br] and one quaternary phosphonium (QP) salt: tetrabutyl phosphonium tetrafluroborate [TBP] [BF4]. Characterization of resulting materials by XRD, TGA, FTIR and chemical analysis confirmed the formation of organoclays. Ternary composites of PP/organoclay/ maleic anhydride grafted polypropylene (MAPP) were prepared with two different grades of PPs in a co-rotating twin screw extruder. Composites prepared with these organoclays and PPs showed microcomposite formation. In the second part of the study, raw bentonite was purified by sedimentation, and characterization of purified bentonite (PB) by XRD, cation exchange capacity (CEC) measurement and chemical analysis (ICP) confirmed the success of purification method. PB was then modified with two QA`s: dimethyl dioctadecylammonium chloride [DMDA] [Cl], tetrakis decylammonium bromide [STKA] [Br] and one QP: tributyl hexadecyl phosphonium bromide [TBHP] [Br]. Organoclays from PB were used with the PP with lower viscosity, and ternary nanocomposites (PP/Organoclay2/MAPP5) were prepared in the extruder followed by batch mixing in an intensive batch mixer. Use of DMDA and TBHP OCs resulted in nanocomposite formation, while STKA resulted in microcomposite formation as observed by XRD and TEM. Young`s modulus and yield stress of the samples were enhanced through nanocomposite formation. In the last part of the study, ternary composites of LLDPE/Organoclay/ compatibilizer, a random terpolymer of ethylene, butyl acrylate and maleic anhydride (E-BA-MAH, Lotader&reg / 3210), were prepared by melt compounding in the batch mixer at two different clay concentrations (2 and 5 wt %) and fixed compatibilizer/organoclay ratio (&alpha / =2.5). A commercial organoclay, I34, was also used in LLDPE based nanocomposites to make a comparison. XRD and TEM analyses of the compounds prepared by DMDA and TBHP showed mixed nanocomposite morphologies consisting of partially intercalated and exfoliated layers. Young`s modulus and tensile strength of nanocomposites prepared with DMDA and TBHP showed generally higher values compared to those of neat LLDPE, while results were the highest in the composites prepared with commercial organoclay I34. Parallel disk rheometry was used as a supplementary technique to XRD, TEM and mechanical characterizations, and it was shown to be a sensitive tool in assessing the degree of dispersion of clay layers in the polymer matrix.
9

Use of Pyrolyzed Soybean Hulls as Fillers in Polyolefins

Coben, Collin 09 July 2020 (has links)
No description available.
10

On the Melting and Crystallization of Linear Polyethylene, Poly(ethylene oxide) and Metallocene Linear Low-Density Polyethylene

Mohammadi, Hadi 27 August 2018 (has links)
The crystallization and melting behaviors of an ethylene/1-hexene copolymer and series of narrow molecular weight linear polyethylene and poly(ethylene oxide) fractions were studied using a combination of ultra-fast and conventional differential scanning calorimetry, optical microscopy, small angle X-ray scattering, and wide angle X-ray diffraction. In the case of linear polyethylene and poly(ethylene oxide), the zero-entropy production melting temperatures of initial lamellae of isothermally crystallized fractions were analyzed in the context of the non-linear Hoffman-Weeks method. Using the Huggins equation, limiting equilibrium melting temperatures of 141.4 ± 0.8oC and 81.4 ± 1.0oC were estimated for linear polyethylene and poly(ethylene oxide), respectively. The former and the latter are about 4oC lower and 12.5oC higher than these predicted by Flory/Vrij and Buckley/Kovacs, respectively. Accuracy of the non-linear Hoffman-Weeks method was also examined using initial lamellar thickness literature data for a linear polyethylene fraction at different crystallization temperatures. The equilibrium melting temperature obtained by the Gibbs-Thomson approach and the C2 value extracted from the initial lamellar thickness vs. reciprocal of undercooling plot were similar within the limits of experimental error to those obtained here through the non-linear Hoffman-Weeks method. In the next step, the Lauritzen-Hoffman (LH) secondary nucleation theory was modified to account for the effect of stem length fluctuations, tilt angle of the crystallized stems, and temperature dependence of the lateral surface free energy. Analysis of spherulite growth rate and wide angle X-ray diffraction data for 26 linear polyethylene and 5 poly(ethylene oxide) fractions revealed that the undercooling at the regime I/II transition, the equilibrium fold surface free energy, the strength of the stem length fluctuations and the substrate length at the regime I/II transition are independent of chain length. The value of the equilibrium fold surface free energy derived from crystal growth rate data using the modified Lauritzen-Hoffman theory matches that calculated from lamellar thickness and melting data through the Gibbs-Thomson equation for both linear polyethylene and poly(ethylene oxide). Larger spherulitic growth rates for linear polyethylene than for poly(ethylene oxide) at low undercooling is explained by the higher secondary nucleation constant of poly(ethylene oxide). While the apparent friction coefficient of a crystallizing linear polyethylene chain is 2 to 8 times higher than that of a chain undergoing reptation in the melt state, the apparent friction coefficient of a crystallizing poly(ethylene oxide) chain is about two orders of magnitude lower. This observation suggests that segmental mobility on the crystal phase plays a significant role in the crystal growth process. In case of the statistical ethylene/1-hexene copolymer, the fold surface free energies of the copolymer lamellae at the time of crystallization and melting increase with increasing undercooling, approaching the same magnitude at high undercooling. As a result of this temperature dependence, the experimental melting vs. crystallization temperature plot is parallel to the Tm = Tc line and the corresponding Gibbs-Thomson plot is non-linear. This behavior is attributed to the fact that longer ethylene sequences form a chain-folded structure with lower concentration of branch points on the lamellar surface at lower undercooling, while shorter ethylene sequences form lamellar structures at higher undercooling exhibiting a higher concentration of branch points on the lamellar surface. Branch points limit the ability of lamellar structures to relax their kinetic stem-length fluctuations during heating prior to melting. / Ph. D. / Morphology of semi-crystalline polymers is strongly affected by their crystallization conditions. Thermodynamic and kinetic models allow us to understand the crystallization mechanism of a semi-crystalline polymer and relate its crystallization conditions to the final morphology. In this research, we studied the molar mass dependence of the crystallization and melting behaviors of narrow molecular weight distribution linear polyethylene (LPE) and poly(ethylene oxide) (PEO) fractions using a modified Lauritzen-Hoffman (LH) secondary nucleation theory. We have shown that the equilibrium melting temperature of LPE and PEO fractions found from the non-linear Hoffman-Weeks method are within the experimental uncertainty identical with these measured directly for extended chain crystals or derived from a Gibbs-Thomson analysis. The value of the equilibrium fold surface free energy derived from crystal growth rate data using the modified LH theory matches that calculated from lamellar thickness and melting data through the Gibbs-Thomson equation for both LPE and PEO. We reported that the higher segmental mobility of PEO in the crystalline phase leads to significantly lower apparent chain friction coefficients during crystal growth compared to LPE. We also studied the role of short-chain branching in the crystal growth kinetics of ethylene/1-hexene copolymers. We observed that the fold surface free energies during crystallization and during melting are both function of the undercooling while the ratio of the former to the latter decreases with increasing undercooling. We proposed that this behavior may be related to the concentration of short-chain branches at the surface of the lamellae, where higher concentration leads to lower relaxation.

Page generated in 0.0767 seconds