• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Approximation and Optimal Control of Nonnormal Distributed Parameter Systems

Vugrin, Eric D. 29 April 2004 (has links)
For more than 100 years, the Navier-Stokes equations and various linearizations have been used as a model to study fluid dynamics. Recently, attention has been directed toward studying the nonnormality of linearized problems and developing convergent numerical schemes for simulation of these sytems. Numerical schemes for optimal control problems often require additional properties that may not be necessary for simulation; these properties can be critical when studying nonnormal problems. This research is concerned with approximating infinite dimensional optimal control problems with nonnormal system operators. We examine three different finite element methods for a specific convection-diffusion equation and prove convergence of the infinitesimal generators. Additionally, for two of these schemes, we prove convergence of the associated feedback gains. We apply these three schemes to control problems and compare the performance of all three methods. / Ph. D.
2

Stabilized Finite Element Methods for Feedback Control of Convection Diffusion Equations

Krueger, Denise A. 03 August 2004 (has links)
We study the behavior of numerical stabilization schemes in the context of linear quadratic regulator (LQR) control problems for convection diffusion equations. The motivation for this effort comes from the observation that when linearization is applied to fluid flow control problems the resulting equations have the form of a convection diffusion equation. This effort is focused on the specific problem of computing the feedback functional gains that are the kernels of the feedback operators defined by solutions of operator Riccati equations. We develop a stabilization scheme based on the Galerkin Least Squares (GLS) method and compare this scheme to the standard Galerkin finite element method. We use cubic B-splines in order to keep the higher order terms that occur in GLS formulation. We conduct a careful numerical investigation into the convergence and accuracy of the functional gains computed using stabilization. We also conduct numerical studies of the role that the stabilization parameter plays in this convergence. Overall, we discovered that stabilization produces much better approximations to the functional gains on coarse meshes than the unstabilized method and that adjustments in the stabilization parameter greatly effects the accuracy and convergence rates. We discovered that the optimal stabilization parameter for simulation and steady state analysis is not necessarily optimal for solving the Riccati equation that defines the functional gains. Finally, we suggest that the stabilized GLS method might provide good initial values for iterative schemes on coarse meshes. / Ph. D.

Page generated in 0.1404 seconds