• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Correlações e interações de longo alcance em meios desordenados: linhas costeiras e transição de Anderson / Correlations and long-range interactions in disordered media: shorelines and Anderson transition

Morais, Pablo Abreu de January 2012 (has links)
MORAIS, Pablo Abreu de. Correlações e interações de longo alcance em meios desordenados: linhas costeiras e transição de Anderson. 2012. 117 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-10-22T18:47:42Z No. of bitstreams: 1 2012_tese_pamorais.pdf: 35280964 bytes, checksum: 5f9fe894e56c156657d642fac9435302 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-10-22T21:32:50Z (GMT) No. of bitstreams: 1 2012_tese_pamorais.pdf: 35280964 bytes, checksum: 5f9fe894e56c156657d642fac9435302 (MD5) / Made available in DSpace on 2015-10-22T21:32:50Z (GMT). No. of bitstreams: 1 2012_tese_pamorais.pdf: 35280964 bytes, checksum: 5f9fe894e56c156657d642fac9435302 (MD5) Previous issue date: 2012 / Many physical phenomena have strong dependence on the disorder of the medium in which they occur. The {it Anderson} theory localization, for example, states that the introduction of disorder in electronic systems can promote the metal-insulator transition, also known as {it Anderson} transition. However, for low dimensional systems, according to the same theory, any finite degree of uncorrelated disorder is able to promote the exponential localization of all electronic functions. The general {it Anderson} theory localization is violated when long-range correlations and long-range interactions are used. In this scenario, the metal-insulator transition also occurs for low dimensional systems. In network problems, the long-range connections are responsible for the short average distance between individuals belonging to the same social network. This phenomenon is popularly known as six degrees of separation. Furthermore, {it Kleinberg} showed that the introduction of a power-law distribution of long-range links in a network produces a minimum in the transmission time information from a source site to a target site network . In this thesis, we investigate how the long-range disorder changes the universality class of two mathematical models that represent the following physical problems: the erosion process in correlated landscapes and the delocalization-localization transition of the normal modes of a harmonic chain with long range connections restricted by a cost function. In the first model, we show that long-range spatial correlations in the geological properties of the coast, in the critical regime of our model, generates a spectrum of fractals shorelines whose fractal dimensions vary between {it D} = 1.33 and 1.00 when we vary the {it Hurst} exponent in the range $0< H <1$. Furthermore, when we use uncorrelated surfaces, the shoreline, for very intense sea erosion, are self-affine and belong to the same universality class of the interfaces described by the equation of {it Kardar-Parisi-Zhang} ({it KPZ}). In the second model, we show that long-range links in a chain harmonic inserted with a probability with decreasing size of the bond, $p sim r^{-alpha}$, restricted by a cost function proportional to chain length, promotes a delocalization-localization transition of the normal modes for the exponent $ alpha simeq 1.25$. / Muitos fenômenos físicos têm forte dependência da desordem do meio no qual ocorrem. A teoria de localização de Anderson, por exemplo, estabelece que a introdução de desordem em sistemas eletrônicos pode promover a transição metal-isolante, também conhecida como transição de Anderson. Contudo, para sistemas de baixa dimensionalidade, segundo essa mesma teoria, qualquer grau finito de desordem pode promover a localização exponencial de todas as funções eletrônicas. No entanto, foi mostrado que a teoria geral de localização de Anderson é violada quando correlações e interações de longo alcance são utilizadas. Nesse cenário, a transição metal-isolante ocorre também para sistemas de baixa dimensionalidade. Nos problemas relacionados com redes, as ligações de longo alcance são responsáveis pela pequena distância média entre indivíduos pertencentes à mesma rede social. Esse fenômeno é popularmente conhecido como os seis graus de separação. Além disso, Kleinberg mostrou que a introdução de uma distribuição em lei de potência de ligações de longo alcance em uma rede substrato gera um mínimo no tempo de envio de uma informação de um sítio fonte a um sítio alvo da rede. Nesta tese, investigamos como a desordem de longo alcance altera a classe de universalidade de dois modelos matemáticos que representam os seguintes problemas físicos: o processo de erosão na costa de paisagens correlacionadas e a transição deslocalização-localização dos modos normais de vibração de uma cadeia harmônica com ligações de longo alcance restritas por uma função custo. No primeiro modelo, mostramos que correlações espaciais de longo alcance nas propriedades geológicas da costa, no regime crítico do nosso modelo, gera um espectro de linhas costeiras fractais cujas dimensões fractais variam entre D=1.33 e 1.00 quando variamos o expoente de Hurst no intervalo 0.
2

Correlações e interações de longo alcance em meios desordenados: linhas costeiras e transição de Anderson / Correlations and long-range interactions in disordered media: shorelines and Anderson transition

Morais, Pablo Abreu de January 2012 (has links)
MORAIS, Pablo Abreu de. Correlações e interações de longo alcance em meios desordenados: linhas costeiras e transição de Anderson. 2012. 117 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-05-19T18:48:02Z No. of bitstreams: 1 2012_tese_pamorais.pdf: 35280964 bytes, checksum: f36822e135c7b0c6f6a09cfca085d2e4 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-05-22T20:05:29Z (GMT) No. of bitstreams: 1 2012_tese_pamorais.pdf: 35280964 bytes, checksum: f36822e135c7b0c6f6a09cfca085d2e4 (MD5) / Made available in DSpace on 2015-05-22T20:05:29Z (GMT). No. of bitstreams: 1 2012_tese_pamorais.pdf: 35280964 bytes, checksum: f36822e135c7b0c6f6a09cfca085d2e4 (MD5) Previous issue date: 2012 / Many physical phenomena have strong dependence on the disorder of the medium in which they occur. The {it Anderson} theory localization, for example, states that the introduction of disorder in electronic systems can promote the metal-insulator transition, also known as {it Anderson} transition. However, for low dimensional systems, according to the same theory, any finite degree of uncorrelated disorder is able to promote the exponential localization of all electronic functions. The general {it Anderson} theory localization is violated when long-range correlations and long-range interactions are used. In this scenario, the metal-insulator transition also occurs for low dimensional systems. In network problems, the long-range connections are responsible for the short average distance between individuals belonging to the same social network. This phenomenon is popularly known as six degrees of separation. Furthermore, {it Kleinberg} showed that the introduction of a power-law distribution of long-range links in a network produces a minimum in the transmission time information from a source site to a target site network . In this thesis, we investigate how the long-range disorder changes the universality class of two mathematical models that represent the following physical problems: the erosion process in correlated landscapes and the delocalization-localization transition of the normal modes of a harmonic chain with long range connections restricted by a cost function. In the first model, we show that long-range spatial correlations in the geological properties of the coast, in the critical regime of our model, generates a spectrum of fractals shorelines whose fractal dimensions vary between {it D} = 1.33 and 1.00 when we vary the {it Hurst} exponent in the range $0< H <1$. Furthermore, when we use uncorrelated surfaces, the shoreline, for very intense sea erosion, are self-affine and belong to the same universality class of the interfaces described by the equation of {it Kardar-Parisi-Zhang} ({it KPZ}). In the second model, we show that long-range links in a chain harmonic inserted with a probability with decreasing size of the bond, $p sim r^{-alpha}$, restricted by a cost function proportional to chain length, promotes a delocalization-localization transition of the normal modes for the exponent $ alpha simeq 1.25$. / Muitos fenômenos físicos têm forte dependência da desordem do meio no qual ocorrem. A teoria de localização de Anderson, por exemplo, estabelece que a introdução de desordem em sistemas eletrônicos pode promover a transição metal-isolante, também conhecida como transição de Anderson. Contudo, para sistemas de baixa dimensionalidade, segundo essa mesma teoria, qualquer grau finito de desordem pode promover a localização exponencial de todas as funções eletrônicas. No entanto, foi mostrado que a teoria geral de localização de Anderson é violada quando correlações e interações de longo alcance são utilizadas. Nesse cenário, a transição metal-isolante ocorre também para sistemas de baixa dimensionalidade. Nos problemas relacionados com redes, as ligações de longo alcance são responsáveis pela pequena distância média entre indivíduos pertencentes à mesma rede social. Esse fenômeno é popularmente conhecido como os seis graus de separação. Além disso, Kleinberg mostrou que a introdução de uma distribuição em lei de potência de ligações de longo alcance em uma rede substrato gera um mínimo no tempo de envio de uma informação de um sítio fonte a um sítio alvo da rede. Nesta tese, investigamos como a desordem de longo alcance altera a classe de universalidade de dois modelos matemáticos que representam os seguintes problemas físicos: o processo de erosão na costa de paisagens correlacionadas e a transição deslocalização-localização dos modos normais de vibração de uma cadeia harmônica com ligações de longo alcance restritas por uma função custo. No primeiro modelo, mostramos que correlações espaciais de longo alcance nas propriedades geológicas da costa, no regime crítico do nosso modelo, gera um espectro de linhas costeiras fractais cujas dimensões fractais variam entre D=1.33 e 1.00 quando variamos o expoente de Hurst no intervalo 0< H < 1. Além disso, quando utilizamos superfícies não correlacionadas, as linha costeiras, para erosões marítimas muito intensas, são auto-afins e pertencem a mesma classe de universalidade das interfaces descritas pela equação de Kardar-Parisi-Zhang (KPZ). No segundo modelo, mostramos que ligações de longo alcance inseridas em uma cadeia harmônica com uma probabilidade decaindo com o tamanho da ligação, p ∼ r−α, restritas por uma função custo proporcional ao tamanho da cadeia, promovem uma transição deslocalização localização dos modos normais de vibração para o expoente α ≅ 1.25.
3

CorrelaÃÃes e interaÃÃes de longo alcance em meios desordenados: linhas costeiras e transiÃÃo de Anderson / Correlations and long-range interactions in disordered media: shorelines and Anderson transition

Pablo Abreu de Morais 19 October 2012 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Muitos fenÃmenos fÃsicos tÃm forte dependÃncia da desordem do meio no qual ocorrem. A teoria de localizaÃÃo de Anderson, por exemplo, estabelece que a introduÃÃo de desordem em sistemas eletrÃnicos pode promover a transiÃÃo metal-isolante, tambÃm conhecida como transiÃÃo de Anderson. Contudo, para sistemas de baixa dimensionalidade, segundo essa mesma teoria, qualquer grau finito de desordem pode promover a localizaÃÃo exponencial de todas as funÃÃes eletrÃnicas. No entanto, foi mostrado que a teoria geral de localizaÃÃo de Anderson à violada quando correlaÃÃes e interaÃÃes de longo alcance sÃo utilizadas. Nesse cenÃrio, a transiÃÃo metal-isolante ocorre tambÃm para sistemas de baixa dimensionalidade. Nos problemas relacionados com redes, as ligaÃÃes de longo alcance sÃo responsÃveis pela pequena distÃncia mÃdia entre indivÃduos pertencentes à mesma rede social. Esse fenÃmeno à popularmente conhecido como os seis graus de separaÃÃo. AlÃm disso, Kleinberg mostrou que a introduÃÃo de uma distribuiÃÃo em lei de potÃncia de ligaÃÃes de longo alcance em uma rede substrato gera um mÃnimo no tempo de envio de uma informaÃÃo de um sÃtio fonte a um sÃtio alvo da rede. Nesta tese, investigamos como a desordem de longo alcance altera a classe de universalidade de dois modelos matemÃticos que representam os seguintes problemas fÃsicos: o processo de erosÃo na costa de paisagens correlacionadas e a transiÃÃo deslocalizaÃÃo-localizaÃÃo dos modos normais de vibraÃÃo de uma cadeia harmÃnica com ligaÃÃes de longo alcance restritas por uma funÃÃo custo. No primeiro modelo, mostramos que correlaÃÃes espaciais de longo alcance nas propriedades geolÃgicas da costa, no regime crÃtico do nosso modelo, gera um espectro de linhas costeiras fractais cujas dimensÃes fractais variam entre D=1.33 e 1.00 quando variamos o expoente de Hurst no intervalo 0<H<1. AlÃm disso, quando utilizamos superfÃcies nÃo correlacionadas, as linha costeiras, para erosÃes marÃtimas muito intensas, sÃo autoafins e pertencem à mesma classe de universalidade das interfaces descritas pela equaÃÃo de Kardar-Parisi-Zhang (KPZ). No segundo modelo, mostramos que ligaÃÃes de longo alcance inseridas em uma cadeia harmÃnica com uma probabilidade decaindo com o tamanho da ligaÃÃo, p ~ r -&#945;, restritas por uma funÃÃo custo proporcional ao tamanho da cadeia, promovem uma transiÃÃo deslocalizaÃÃo-localizaÃÃo dos modos normais de vibraÃÃo para o expoente &#945; &#8776; 1.25. / Many physical phenomena have strong dependence on the disorder of the medium in which they occur. The {it Anderson} theory localization, for example, states that the introduction of disorder in electronic systems can promote the metal-insulator transition, also known as {it Anderson} transition. However, for low dimensional systems, according to the same theory, any finite degree of uncorrelated disorder is able to promote the exponential localization of all electronic functions. The general {it Anderson} theory localization is violated when long-range correlations and long-range interactions are used. In this scenario, the metal-insulator transition also occurs for low dimensional systems. In network problems, the long-range connections are responsible for the short average distance between individuals belonging to the same social network. This phenomenon is popularly known as six degrees of separation. Furthermore, {it Kleinberg} showed that the introduction of a power-law distribution of long-range links in a network produces a minimum in the transmission time information from a source site to a target site network . In this thesis, we investigate how the long-range disorder changes the universality class of two mathematical models that represent the following physical problems: the erosion process in correlated landscapes and the delocalization-localization transition of the normal modes of a harmonic chain with long range connections restricted by a cost function. In the first model, we show that long-range spatial correlations in the geological properties of the coast, in the critical regime of our model, generates a spectrum of fractals shorelines whose fractal dimensions vary between {it D} = 1.33 and 1.00 when we vary the {it Hurst} exponent in the range $0< H <1$. Furthermore, when we use uncorrelated surfaces, the shoreline, for very intense sea erosion, are self-affine and belong to the same universality class of the interfaces described by the equation of {it Kardar-Parisi-Zhang} ({it KPZ}). In the second model, we show that long-range links in a chain harmonic inserted with a probability with decreasing size of the bond, $p sim r^{-alpha}$, restricted by a cost function proportional to chain length, promotes a delocalization-localization transition of the normal modes for the exponent $ alpha simeq 1.25$.

Page generated in 0.0569 seconds