Spelling suggestions: "subject:"line function""
1 |
Choosing the proper link function for binary dataLi, Jingwei, active 21st century 08 October 2014 (has links)
Since generalized linear model (GLM) with binary response variable is widely used in many disciplines, many efforts have been made to construct a fit model. However, little attention is paid to the link functions, which play a critical role in GLM model. In this article, we compared three link functions and evaluated different model selection methods based on these three link functions. Also, we provided some suggestions on how to choose the proper link function for binary data. / text
|
2 |
Implementação em R de modelos de regressão binária com ligação paramétrica / R implementation of binary regression models with parametric linkSantos, Bernardo Pereira dos 27 February 2013 (has links)
A análise de dados binários é usualmente feita através da regressão logística, mas esse modelo possui limitações. Modificar a função de ligação da regressão permite maior flexibilidade na modelagem e diversas propostas já foram feitas nessa área. No entanto, não se sabe de nenhum pacote estatístico capaz de estimar esses modelos, o que dificulta sua utilização. O presente trabalho propõe uma implementação em R de quatro modelos de regressão binária com função de ligação paramétrica usando tanto a abordagem frequentista como a Bayesiana. / Binary data analysis is usually conducted with logistic regression, but this model has limitations. Modifying the link function allows greater flexibility in modelling and several proposals have been made on the field. However, to date there are no packages capable of estimating these models imposing some difficulties to utilize them. The present work develops an R implementation of four binary regression models with parametric link functions in both frequentist and Bayesian approaches.
|
3 |
Efeitos da especificação incorreta da função de ligação no modelo de regressão beta / The impact of misspecification of the link function in beta regressionAndrade, Augusto Cesar Giovanetti de 09 August 2007 (has links)
O ajuste de modelos de regressão beta requer a especificação de uma função de ligação. Algumas funções de ligação úteis são: logito, probito, complemento log-log e log-log. Usualmente, a ligação logito é utilizada pois permite interpretação simples para os parâmetros de regressão. O principal objetivo deste trabalho é avaliar o impacto da especificação incorreta da função de ligação em regressão beta. Estudos de simulação serão usados com esse prop´osito. Amostras da variável resposta serão geradas assumindo uma função de ligação conhecida (verdadeira) e o modelo de regressão beta será ajustado usando a função de ligação verdadeira (correta) e algumas funções de ligação incorretas. Resultados numéricos serão comparados para avaliar o efeito da especificação incorreta da função de ligação sobre as inferências em regressão beta. Adicionalmente, será introduzido um modelo de regressão beta com função de ligação de Aranda-Ordaz, a qual depende de um parâmetro que pode ser estimado através dos dados. / Fitting beta regression models requires the specification of the link function. Some useful link functions for beta regression are: logit, probit, complementary log-log and log-log. Usually, the logit link is used since it allows easy interpretation for the regression parameters. The main objective of this work is to evaluate the impact of misspecification of the link function in beta regression. Simulation studies will be used for this purpose. Samples of the response variable will be generated assuming a known (true) link function, and the beta regression will be fitted using the true (correct) link and some incorrect link functions. Numerical results will be compared to evaluate the effect of misspecification of the link function on inference in beta regression. Also, we will introduce a beta regression model with Aranda-Ordaz link function, which depends on an unknown parameter that can be estimated through the data.
|
4 |
Implementação em R de modelos de regressão binária com ligação paramétrica / R implementation of binary regression models with parametric linkBernardo Pereira dos Santos 27 February 2013 (has links)
A análise de dados binários é usualmente feita através da regressão logística, mas esse modelo possui limitações. Modificar a função de ligação da regressão permite maior flexibilidade na modelagem e diversas propostas já foram feitas nessa área. No entanto, não se sabe de nenhum pacote estatístico capaz de estimar esses modelos, o que dificulta sua utilização. O presente trabalho propõe uma implementação em R de quatro modelos de regressão binária com função de ligação paramétrica usando tanto a abordagem frequentista como a Bayesiana. / Binary data analysis is usually conducted with logistic regression, but this model has limitations. Modifying the link function allows greater flexibility in modelling and several proposals have been made on the field. However, to date there are no packages capable of estimating these models imposing some difficulties to utilize them. The present work develops an R implementation of four binary regression models with parametric link functions in both frequentist and Bayesian approaches.
|
5 |
Efeitos da especificação incorreta da função de ligação no modelo de regressão beta / The impact of misspecification of the link function in beta regressionAugusto Cesar Giovanetti de Andrade 09 August 2007 (has links)
O ajuste de modelos de regressão beta requer a especificação de uma função de ligação. Algumas funções de ligação úteis são: logito, probito, complemento log-log e log-log. Usualmente, a ligação logito é utilizada pois permite interpretação simples para os parâmetros de regressão. O principal objetivo deste trabalho é avaliar o impacto da especificação incorreta da função de ligação em regressão beta. Estudos de simulação serão usados com esse prop´osito. Amostras da variável resposta serão geradas assumindo uma função de ligação conhecida (verdadeira) e o modelo de regressão beta será ajustado usando a função de ligação verdadeira (correta) e algumas funções de ligação incorretas. Resultados numéricos serão comparados para avaliar o efeito da especificação incorreta da função de ligação sobre as inferências em regressão beta. Adicionalmente, será introduzido um modelo de regressão beta com função de ligação de Aranda-Ordaz, a qual depende de um parâmetro que pode ser estimado através dos dados. / Fitting beta regression models requires the specification of the link function. Some useful link functions for beta regression are: logit, probit, complementary log-log and log-log. Usually, the logit link is used since it allows easy interpretation for the regression parameters. The main objective of this work is to evaluate the impact of misspecification of the link function in beta regression. Simulation studies will be used for this purpose. Samples of the response variable will be generated assuming a known (true) link function, and the beta regression will be fitted using the true (correct) link and some incorrect link functions. Numerical results will be compared to evaluate the effect of misspecification of the link function on inference in beta regression. Also, we will introduce a beta regression model with Aranda-Ordaz link function, which depends on an unknown parameter that can be estimated through the data.
|
6 |
Accelerated testing with application in financeOppel, Anel January 2016 (has links)
The event of a default for low-default portfolios, such as sovereign debt or banks, have received
much attention as a result of the increasing instabilities in financial markets. The lack
of sufficient default information on low-default portfolios complicates the protection of such
portfolios. Default protections have typically, in the past, relied on extreme value theory and
reporting the value at risk. The focus here, is the application of an engineering concept, accelerated
test techniques, to the problem of insufficient data on low-default portfolios. In the
application, high-default portfolios serve as stressed cases of low-default portfolios. Since
high-default portfolios have more data available, viewing it as a stressed case of a low-default
portfolio enables us to extrapolate the data to the low-default portfolio environment, and do
estimation such as estimating the default probability for a low-default portfolio. The flexible
framework through which the above is achieved, is provided. / Dissertation (MSc)--University of Pretoria, 2016. / Statistics / MSc / Unrestricted
|
7 |
Flexible Joint Hierarchical Gaussian Process Model for Longitudinal and Recurrent Event DataSu, Weiji 22 October 2020 (has links)
No description available.
|
8 |
Regression Analysis for Zero Inflated Population Under Complex Sampling DesignsPaneru, Khyam Narayan 20 December 2013 (has links)
No description available.
|
9 |
Regressão binária nas abordagens clássica e Bayesiana / Binary regression in the classical and Bayesian approachesFernandes, Amélia Milene Correia 16 December 2016 (has links)
Este trabalho tem como objetivo estudar o modelo de regressão binária nas abordagens clássica e bayesiana utilizando as funções de ligações probito, logito, complemento log-log, transformação box-cox e probito-assimétrico. Na abordagem clássica apresentamos as suposições e o procedimento para ajustar o modelo de regressão e verificamos a precisão dos parâmetros estimados, construindo intervalos de confiança e testes de hipóteses. Enquanto que, na inferência bayesiana fizemos um estudo comparativo utilizando duas metodologias. Na primeira metodologia consideramos densidades a priori não informativas e utilizamos o algoritmo Metropolis-Hastings para ajustar o modelo. Na segunda metodologia utilizamos variáveis auxiliares para obter a distribuição a posteriori conhecida, facilitando a implementação do algoritmo do Amostrador de Gibbs. No entanto, a introdução destas variáveis auxiliares podem gerar valores correlacionados, o que leva à necessidade de se utilizar o agrupamento das quantidades desconhecidas em blocos para reduzir a autocorrelação. Através do estudo de simulação mostramos que na inferência clássica podemos usar os critérios AIC e BIC para escolher o melhor modelo e avaliamos se o percentual de cobertura do intervalo de confiança assintótica está de acordo com o esperado na teoria assintótica. Na inferência bayesiana constatamos que o uso de variáveis auxiliares resulta em um algoritmo mais eficiente segundo os critérios: erro quadrático médio (EQM), erro percentual absoluto médio (MAPE) e erro percentual absoluto médio simétrico (SMAPE). Como ilustração apresentamos duas aplicações com dados reais. Na primeira, consideramos um conjunto de dados da variação do Ibovespa e a variação do valor diário do fechamento da cotação do dólar no período de 2013 a 2016. Na segunda aplicação, trabalhamos com um conjunto de dados educacionais (INEP-2013), focando nos estudos das variáveis que influenciam a aprovação do aluno. / The objective of this work is to study the binary regression model under the frequentist and Bayesian approaches using the probit, logit, log-log complement, Box-Cox transformation and skewprobit as link functions. In the classical approach we presented assumpti- ons and procedures used in the regression modeling. We verified the accuracy of the estimated parameters by building confidence intervals and conducting hypothesis tests. In the Bayesian approach we made a comparative study using two methodologies. For the first methodology, we considered non-informative prior distributions and the Metropolis-Hastings algorithm to estimate the model. In the second methodology we used auxiliary variables to obtain the known a posteriori distribution, allowing the use of the Gibbs Sampler algorithm. However, the introduction of these auxiliary variables can generate correlated values and needs the use of clustering of unknown quantities in blocks to reduce the autocorrelation. In the simulation study we used the AIC and BIC information criteria to select the most appropriate model and we evaluated whether the coverage probabilities of the confidence interval is in agre- ement with that expected by the asymptotic theory. In Bayesian approach we found that the inclusion of auxiliary variables in the model results in a more efficient algoritm according to the MSE, MAPE and SMAPE criteria. In this work we also present applications to two real datasets. The first dataset used is the variation of the Ibovespa and variation of the daily value of the American dollar at the time of closing the 2013 to 2016. The second dataset, used is an educational data set (INEP-2013), where we are interested in studying the factors that influence the approval of the student.
|
10 |
Regressão binária nas abordagens clássica e Bayesiana / Binary regression in the classical and Bayesian approachesAmélia Milene Correia Fernandes 16 December 2016 (has links)
Este trabalho tem como objetivo estudar o modelo de regressão binária nas abordagens clássica e bayesiana utilizando as funções de ligações probito, logito, complemento log-log, transformação box-cox e probito-assimétrico. Na abordagem clássica apresentamos as suposições e o procedimento para ajustar o modelo de regressão e verificamos a precisão dos parâmetros estimados, construindo intervalos de confiança e testes de hipóteses. Enquanto que, na inferência bayesiana fizemos um estudo comparativo utilizando duas metodologias. Na primeira metodologia consideramos densidades a priori não informativas e utilizamos o algoritmo Metropolis-Hastings para ajustar o modelo. Na segunda metodologia utilizamos variáveis auxiliares para obter a distribuição a posteriori conhecida, facilitando a implementação do algoritmo do Amostrador de Gibbs. No entanto, a introdução destas variáveis auxiliares podem gerar valores correlacionados, o que leva à necessidade de se utilizar o agrupamento das quantidades desconhecidas em blocos para reduzir a autocorrelação. Através do estudo de simulação mostramos que na inferência clássica podemos usar os critérios AIC e BIC para escolher o melhor modelo e avaliamos se o percentual de cobertura do intervalo de confiança assintótica está de acordo com o esperado na teoria assintótica. Na inferência bayesiana constatamos que o uso de variáveis auxiliares resulta em um algoritmo mais eficiente segundo os critérios: erro quadrático médio (EQM), erro percentual absoluto médio (MAPE) e erro percentual absoluto médio simétrico (SMAPE). Como ilustração apresentamos duas aplicações com dados reais. Na primeira, consideramos um conjunto de dados da variação do Ibovespa e a variação do valor diário do fechamento da cotação do dólar no período de 2013 a 2016. Na segunda aplicação, trabalhamos com um conjunto de dados educacionais (INEP-2013), focando nos estudos das variáveis que influenciam a aprovação do aluno. / The objective of this work is to study the binary regression model under the frequentist and Bayesian approaches using the probit, logit, log-log complement, Box-Cox transformation and skewprobit as link functions. In the classical approach we presented assumpti- ons and procedures used in the regression modeling. We verified the accuracy of the estimated parameters by building confidence intervals and conducting hypothesis tests. In the Bayesian approach we made a comparative study using two methodologies. For the first methodology, we considered non-informative prior distributions and the Metropolis-Hastings algorithm to estimate the model. In the second methodology we used auxiliary variables to obtain the known a posteriori distribution, allowing the use of the Gibbs Sampler algorithm. However, the introduction of these auxiliary variables can generate correlated values and needs the use of clustering of unknown quantities in blocks to reduce the autocorrelation. In the simulation study we used the AIC and BIC information criteria to select the most appropriate model and we evaluated whether the coverage probabilities of the confidence interval is in agre- ement with that expected by the asymptotic theory. In Bayesian approach we found that the inclusion of auxiliary variables in the model results in a more efficient algoritm according to the MSE, MAPE and SMAPE criteria. In this work we also present applications to two real datasets. The first dataset used is the variation of the Ibovespa and variation of the daily value of the American dollar at the time of closing the 2013 to 2016. The second dataset, used is an educational data set (INEP-2013), where we are interested in studying the factors that influence the approval of the student.
|
Page generated in 0.0731 seconds