• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

QoS Routing in Wireless Mesh Networks

Abdelkader, Tamer Ahmed Mostafa Mohammed January 2008 (has links)
Wireless Mesh Networking is envisioned as an economically viable paradigm and a promising technology in providing wireless broadband services. The wireless mesh backbone consists of fixed mesh routers that interconnect different mesh clients to themselves and to the wireline backbone network. In order to approach the wireline servicing level and provide same or near QoS guarantees to different traffic flows, the wireless mesh backbone should be quality-of-service (QoS) aware. A key factor in designing protocols for a wireless mesh network (WMN) is to exploit its distinct characteristics, mainly immobility of mesh routers and less-constrained power consumption. In this work, we study the effect of varying the transmission power to achieve the required signal-to-interference noise ratio for each link and, at the same time, to maximize the number of simultaneously active links. We propose a QoS-aware routing framework by using transmission power control. The framework addresses both the link scheduling and QoS routing problems with a cross-layer design taking into consideration the spatial reuse of the network bandwidth. We formulate an optimization problem to find the optimal link schedule and use it as a fitness function in a genetic algorithm to find candidate routes. Using computer simulations, we show that by optimal power allocation the QoS constraints for the different traffic flows are met with more efficient bandwidth utilization than the minimum power allocations.
2

QoS Routing in Wireless Mesh Networks

Abdelkader, Tamer Ahmed Mostafa Mohammed January 2008 (has links)
Wireless Mesh Networking is envisioned as an economically viable paradigm and a promising technology in providing wireless broadband services. The wireless mesh backbone consists of fixed mesh routers that interconnect different mesh clients to themselves and to the wireline backbone network. In order to approach the wireline servicing level and provide same or near QoS guarantees to different traffic flows, the wireless mesh backbone should be quality-of-service (QoS) aware. A key factor in designing protocols for a wireless mesh network (WMN) is to exploit its distinct characteristics, mainly immobility of mesh routers and less-constrained power consumption. In this work, we study the effect of varying the transmission power to achieve the required signal-to-interference noise ratio for each link and, at the same time, to maximize the number of simultaneously active links. We propose a QoS-aware routing framework by using transmission power control. The framework addresses both the link scheduling and QoS routing problems with a cross-layer design taking into consideration the spatial reuse of the network bandwidth. We formulate an optimization problem to find the optimal link schedule and use it as a fitness function in a genetic algorithm to find candidate routes. Using computer simulations, we show that by optimal power allocation the QoS constraints for the different traffic flows are met with more efficient bandwidth utilization than the minimum power allocations.
3

Robust Signaling, Scheduling and Authentication in the Multi-User Multiple-Input-Multiple-Output Channel

Shi, Yan 11 July 2011 (has links) (PDF)
Multiple-input multiple-output (MIMO) networks are known to be able to achieve throughput performance superior to that available from single-input single-output (SISO) systems. However, when applying MIMO in multi-user networks, achieving this throughput advantage requires efficient precoding and optimal network scheduling. Furthermore, MIMO radios can help ensure security in a multi-user network. Previous work has proposed various precoding techniques for the MIMO broadcast channel, based either on channel state information (CSI) or channel distribution information (CDI), which achieve optimal or near- optimal MIMO channel throughput. The performance of these techniques largely depends on the availability of the channel information at the transmitter that must be fed back from the receiver. However, the past work has not examined the impact of latency caused by feedback of channel information and computation. This research proposes a performance metric to measure the throughput degradation caused by compression and feedback of channel information. We further propose an effective data compression technique based on the Karhunen-Lo`eve (KL) Transform and show that linear precoding (beamforming) based on CDI can achieve superior performance by providing stable channel throughput in both time- varying and frequency-selective channels. Very little prior work exists on optimal scheduling for multi-user MIMO networks, particularly in time-varying channels. One reason for this is that hybrid MIMO channels permit much more complex channel structures, such as broadcast channel (BC) and multiple access channel (MAC), whose capacity is limited not only by random channel noise but also by the multi-user interference. Furthermore, the achieved MIMO channel throughput depends on the spatial characteristics of the multi-user channels, a feature not captured by traditional network models based on signal-to-noise ratio and Doppler. Therefore, achieving near optimal performance requires development of scheduling techniques that depend on detailed channel characteristics. This dissertation proposes a novel parametric representation of the channel that simply describes the complex multi-user MIMO channels and allows for efficient scheduling. Because of the computational and feedback efficiency enabled by this parametric approach, it achieves low latency and therefore excellent performance.Finally, in any network setting, security is an important consideration. Specifically authentication ensures that unauthorized users do not gain network access. Unfortunately, user identity can be relatively easy to forge. This work therefore explores the user of radio- metric fingerprinting that uniquely identifies a device by unique imperfections in its transmitted waveform. This work shows that by applying this fingerprinting technique to MIMO devices, authentication reliability can be dramatically improved. The work also develops an information-theoretic approach to identify the optimal set of radiometric features to use for authentication and further considers the impact of drift in radiometric features on authentication performance.
4

Multihop Wireless Networks with Advanced Antenna Systems : An Alternative for Rural Communication

Sánchez Garache, Marvin January 2008 (has links)
Providing access to telecommunication services in rural areas is of paramount importance for the development of any country. Since the cost is the main inhibiting factor, any technical solution for access in sparsely populated rural areas has to be reliable, efficient, and deployable at low-cost. This thesis studies the utilization of Multihop Wireless Networks (MWN) as an appealing alternative for rural communication. MWN are designed with a self-configuring capability and can adapt to the addition or removal of network radio units (nodes). This makes them simple to install, allowing unskilled users to set up the network quickly. To increase the performance and cost-efficiency, this thesis focuses on the use of Advanced Antenna Systems (AAS) in rural access networks. AAS promise to increase the overall capacity in MWN, improving the link quality while suppressing or reducing the multiple access interference. To effectively exploit the capabilities of AAS, a proper design of Medium Access Control (MAC) protocols is needed. Hence, the results of system level studies into MAC protocols and AAS are presented in this thesis. Two different MAC protocols are examined: Spatial Time Division Multiple Access (STDMA) and Carrier Sense Multiple Access Collision Avoidance (CSMA/CA) with handshaking. The effects of utilizing advanced antennas on the end-to-end network throughput and packet delay are analyzed with routing, power control and adaptive transmission data rate control separately and in combination. Many of the STDMA-related research questions addressed in this thesis are posed as nonlinear optimization problems that are solved by the technique called "column generation" to create the transmission schedule using AAS. However, as finding the optimal solution is computationally expensive, we also introduce low-complexity algorithms that, while simpler, yield reasonable results close to the optimal solution. Although STDMA has been found to be very efficient and fair, one potential drawback is that it may adapt slower than a distributed approach like CSMA/CA to network changes produced e.g. by traffic variations and time-variant channel conditions. In CSMA/CA, nodes make their own decisions based on partial network information and the handshaking procedure allows the use of AAS at the transmitter and the receiver. How to effectively use AAS in CSMA/CA with handshaking is addressed in this thesis. Different beam selection policies using switched beam antenna systems are investigated. Finally, we demonstrate how the proposed techniques can be applied in a rural access scenario in Nicaragua. The result of a user-deployed MWN for Internet access shows that the supported aggregated end-to-end rate is higher than an Asymmetric Digital Subscriber Line (ADSL) connection. / QC 20100908
5

Cognitive Gateway to Promote Interoperability, Coverage and Throughput in Heterogeneous Communication Systems

Chen, Qinqin 20 January 2010 (has links)
With the reality that diverse air interfaces and dissimilar access networks coexist, accompanied by the trend that dynamic spectrum access (DSA) is allowed and will be gradually employed, cognition and cooperation form a promising framework to achieve the ideality of seamless ubiquitous connectivity in future communication networks. In this dissertation, the cognitive gateway (CG), conceived as a special cognitive radio (CR) node, is proposed and designed to facilitate universal interoperability among incompatible waveforms. A proof-of-concept prototype is built and tested. Located in places where various communication nodes and diverse access networks coexist, the CG can be easily set up and works like a network server with differentiated service (Diffserv) architecture to provide automatic traffic relaying and link establishment. The author extracts a scalable '“source-CG-destination“ snapshot from the entire network and investigates the key enabling technologies for such a snapshot. The CG features provide universal interoperability, which is enabled by a generic waveform representation format and the reconfigurable software defined radio platform. According to the trend of an all IP-based solution for future communication systems, the term “waveform“ in this dissertation has been defined as a protocol stack specification suite. The author gives a generic waveform representation format based on the five-layer TCP/IP protocol stack architecture. This format can represent the waveforms used by Ethernet, WiFi, cellular system, P25, cognitive radios etc. A significant advantage of CG over other interoperability solutions lies in its autonomy, which is supported by appropriate signaling processes and automatic waveform identification. The service process in a CG is usually initiated by the users who send requests via their own waveforms. These requests are transmitted during the signaling procedures. The complete operating procedure of a CG is depicted as a waveform-oriented cognition loop, which is primarily executed by the waveform identifier, scenario analyzer, central controller, and waveform converter together. The author details the service process initialized by a primary user (e.g. legacy public safety radio) and that initialized by a secondary user (e.g. CR), and describes the signaling procedures between CG and clients for the accomplishment of CG discovery, user registration and un-registration, link establishment, communication resumption, service termination, route discovery, etc. From the waveforms conveyed during the signaling procedures, the waveform identifier extracts the parameters that can be used for a CG to identify the source waveform and the destination waveform. These parameters are called “waveform indicators.“ The author analyzes the four types of waveforms of interest and outlines the waveform indicators for different types of communication initiators. In particular, a multi-layer waveform identifier is designed for a CG to extract the waveform indicators from the signaling messages. For the physical layer signal recognition, a Universal Classification Synchronization (UCS) system has been invented. UCS is conceived as a self-contained system which can detect, classify, synchronize with a received signal and provide all parameters needed for physical layer demodulation without prior information from the transmitter. Currently, it can accommodate the modulations including AM, FM, FSK, MPSK, QAM and OFDM. The design and implementation details of a UCS have been presented. The designed system has been verified by over-the-air (OTA) experiments and its performance has been evaluated by theoretical analysis and software simulation. UCS can be ported to different platforms and can be applied for various scenarios. An underlying assumption for UCS is that the target signal is transmitted continually. However, it is not the case for a CG since the detection objects of a CG are signaling messages. In order to ensure higher recognition accuracy, signaling efficiency, and lower signaling overhead, the author addresses the key issues for signaling scheme design and their dependence on waveform identification strategy. In a CG, waveform transformation (WT) is the last step of the link establishment process. The resources required for transformation of waveform pairs, together with the application priority, constitute the major factors that determine the link control and scheduling scheme in a CG. The author sorts different WT into five categories and describes the details of implementing the four typical types of WT (including physical layer analog – analog gateway, up to link layer digital – digital gateway, up-to-network-layer digital gateway, and Voice over IP (VoIP) – an up to transport layer gateway) in a practical CG prototype. The issues that include resource management and link scheduling have also been addressed. This dissertation presents a CG prototype implemented on the basis of GNU Radio plus multiple USRPs. In particular, the service process of a CG is modeled as a two-stage tandem queue, where the waveform identifier queues at the first stage can be described as M/D/1/1 models and the waveform converter queue at the second stage can be described as G/M/K/K model. Based on these models, the author derives the theoretical block probability and throughput of a CG. Although the “source-CG-destination” snapshot considers only neighboring nodes which are one-hop away from the CG, it is scalable to form larger networks. CG can work in either ad-hoc or infrastructure mode. Utilizing its capabilities, CG nodes can be placed in different network architectures/topologies to provide auxiliary connectivity. Multi-hop cooperative relaying via CGs will be an interesting research topic deserving further investigation. / Ph. D.
6

Joint Congestion Control, Routing And Distributed Link Scheduling In Power Constrained Wireless Mesh Networks

Sahasrabudhe, Nachiket S 11 1900 (has links)
We study the problem of joint congestion control, routing and MAC layer scheduling in multi-hop wireless mesh networks, where the nodes in the network are subjected to energy expenditure rate constraints. As wireless scenario does not allow all the links to be active all the time, only a subset of given links can be active simultaneously. We model the inter-link interference using the link contention graph. All the nodes in the network are power-constrained and we model this constraint using energy expenditure rate matrix. Then we formulate the problem as a network utility maximization (NUM) problem. We notice that this is a convex optimization problem with affine constraints. We apply duality theory and decompose the problem into two sub-problems namely, network layer congestion control and routing problem, and MAC layer scheduling problem. The source adjusts its rate based on the cost of the least cost path to the destination where the cost of the path includes not only the prices of the links in it but also the prices associated with the nodes on the path. The MAC layer scheduling of the links is carried out based on the prices of the links. The optimal scheduler selects that set of non-interfering links, for which the sum of link prices is maximum. We study the effects of energy expenditure rate constraints of the nodes on the maximum possible network utility. It turns out that the dominant of the two constraints namely, the link capacity constraint and the node energy expenditure rate constraint affects the network utility most. Also we notice the fact that the energy expenditure rate constraints do not affect the nature of optimal link scheduling problem. Following this fact, we study the problem of distributed link scheduling. Optimal scheduling requires selecting independent set of maximum aggregate price, but this problem is known to be NP-hard. We first show that as long as scheduling policy selects the set of non-interfering links, it can not go unboundedly away from the optimal solution of network utility maximization problem. Then we proceed and evaluate a simple greedy scheduling algorithm. Analytical bounds on performance are provided and simulations indicate that the greedy heuristic performs well in practice.

Page generated in 0.0795 seconds