431 |
Effects of seed moisture and micronizing temperature on lentil flour properties and the stabilities of colour and unsaturated lipids of beef-lentil systems2014 June 1900 (has links)
This study investigated the effect of seed moisture level of lentil and surface temperature of micronization (infrared heat treatment) on the physico-chemical and functional properties of resulting flours and how these flours affected colour and unsaturated lipid oxidation when incorporated into ground beef products. Flour from raw seed (non-tempered and non-micronized) was used as the control. Whole seeds of small green lentil (Lens culinaris L., var. Eston) without tempering (8% moisture) and tempered to 16% or 23% moisture was infrared heat treated (micronized) to 115, 130, 150 or 165 °C surface temperature. The decreased protein solubility (2-60%) and lipoxygenase (70-100%), peroxidase (32-100%) and trypsin inhibitory (up to 54%) activities of resulting flours indicated changes in the protein fraction due to heat-moisture treatment. Starch gelatinization was observed at the 23% moisture level and changes in pasting properties, and water and oil absorption capacities varied with treatment. The heat-moisture combinations modified properties of starch and protein to different degrees and, consequently, lentil flour functionalities. Incorporation of lentil flour as a binder in low fat (<10%) beef burgers at 6% (w/w) showed that flours from micronized lentil seeds enhanced retention of redness and suppression of lipid oxidation as indicated by Hunter a* values and thiobarbituric acid reactive substances values, respectively, in a retail display setting. Investigation of total phenolics in aqueous salt extracts of lentil flours showed a decrease in content with increased micronization temperature. The antioxidant assays showed no changes in the ferric ion reducing power or reduction of hydroxyl radical scavenging and superoxide radical scavenging activities with heat-moisture treatment. Reduction of lipoxygenase and peroxidase activities was evident in lentil flour aqueous salt extracts, and the enzyme activities were localized to seed cotyledons. The myoglobin-liposome model study showed that a flour extract from the 16% moisture and 150 °C treatment resulted in a slower rate of oxymyoglobin oxidation initiation than other treatments which had different levels of lipoxygenase and peroxidase activities. Unsaturated lipids accelerated oxymyoglobin degradation irrespective of the presence of lentil extract. The extended fresh red colour retention of ground beef due to addition of flours from micronized seed compared to that from non-micronized seed may be related to suppression of pro-oxidant activities and the activity of potential antioxidants. The putative antioxidative compounds in lentil that are available for meat components may include compounds other than lentil seed phenolics.
|
432 |
The effect of PAF, Lyso-PC, and Acyl-PAF on zinc diffusion and the comparison of transport mechanisms of cadmium, lead, copper, and manganese to zinc through a lipid bilayer / Effect of platelet-activating-factor, 1-palmitoyl-L-lyso-3-phosphocholine, and 1-oleoyl-2-acetyl-sn-glycero-3-phosphocholine on zinc diffusionFortner, Stephanie A. January 2000 (has links)
A method was developed which allowed for more consistent liposome quality, reducing the standard error of initial rates for Zn2+ diffusion by 30%. Introducing low concentration of platelet-activating-factor (PAF), 1-palmitoyl-L-lyso-3-phosphocholine (Lyso-PC), or 1-oleoyl-2-acetyl-sn-glycero-3-phosphocholine (Acyl-PAF) to 1palmitoyl.-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes did not have any noticeable impact on zinc diffusion. Since diffusion is dependent on membrane composition and properties, it can be concluded that PAF, Lyso-PC, and Acyl-PAF did not alter POPC liposome properties significantly. Zn2+ and Cd2+ kinetic experiments showed binding to the liposome surface prior to diffusion and a mutual diffusing species, the monohydroxo complex. Although Mn 2+ did not diffuse to any measurable extent, binding to the liposome surface was also observed. Cue+ and Pb 2+ on the other hand follow a more complex diffusion mechanism, which requires further investigation. / Department of Chemistry
|
433 |
Diacylglycerol: mechanism and efficacy as a functional oilYuan, Quangeng 12 September 2008 (has links)
BACKGROUND: Diaclyglycerol (DAG) oil has the potential as an effective weight control agent as well as an agent to modify overweight related complications. OBJECTIVE: We aim to examine the efficacy of DAG oil (Enova oilTM) on regulating energy expenditure (EE), fat oxidation, body composition, lipid profiles and hepatic lipogenesis in comparison with conventional oils. DESIGN: Twenty-six overweight hypertriglyceridemic women consumed DAG or control oil for 28 days separated by a 4-week washout period using a randomized crossover design. Forty grams of either DAG or control oil were consumed daily by each study subject. RESULTS: DAG oil consumption for a period of 4-week does not alter total EE, fat oxidation, lean mass, fasting lipid profile or fatty acids synthesis rate, but effectively reduces (p<0.05) body weight and adiposity. CONCLUSION: DAG oil maybe an useful agent in the battle against obesity. However, its body weight/composition control effects are not from increasing of lean mass, or postprandial EE and fat oxidation. The consumption of DAG oil for a period of 4-week does not necessarily modify fasting lipid profiles or hepatic lipogenesis to reduce risk of coronary heart diseases in overweight hypertriglyceridemic subjects.
|
434 |
Regulation of Lipid Droplet Cholesterol Efflux from Macrophage Foam Cells: a Role for Oxysterols and AutophagyOuimet, Mireille 21 November 2011 (has links)
Macrophage foam cells are the major culprits in atherosclerotic lesions, having a prominent role in both lesion initiation and progression. With atherosclerosis being the main factor underlying cardiovascular complications, there is a long-standing interest on finding ways to reverse lipid buildup in plaques. Studies have shown that promoting reverse cholesterol transport (RCT) from macrophage foam cells is anti-atherogenic because it alleviates the cholesterol burden of the plaques. The goal of this thesis was to gain insight into the mechanisms that govern cholesterol efflux from macrophage foam cells. The first part of this study looked at the ability of different oxysterols to promote cholesterol efflux in unloaded as compared to lipid-loaded macrophages, and our major finding here is that epoxycholesterol decreases efflux in lipid-loaded macrophages. It appears that epoxycholesterol does so by impairing the release cholesterol from its cellular storage site, the lipid droplet (LD), where it accumulates in the form of cholesteryl esters (CE). These results highlighted the importance of cholesterol release from LDs for efflux; indeed, this process is increasingly being recognized as the rate-limiting step for RCT in vivo. Subsequent experiments aimed at elucidating the mechanisms that govern LD CE hydrolysis in macrophage foam cells lead to the discovery of a novel pathway involved in cholesterol efflux. Macrophage CE hydrolysis is classically defined as being entirely dependent on neutral CE hydrolases. In the second part of this study, we demonstrate that in addition to the canonical CE hydrolases, which mediate neutral lipid hydrolysis, lysosomal acid lipase (LAL) also participates in the hydrolysis of cytoplasmic CE. Autophagy is specifically triggered in macrophages by atherogenic lipoproteins and delivers LD CE to LAL in lysosomes, thus generating free cholesterol for efflux. This autophagy-mediated cholesterol efflux is a process that is primarily dependant on the ABCA1 transporter and, importantly, is important for whole-body RCT. Overall, the studies presented in this thesis support that macrophage LD CE hydrolysis is rate-limiting for cholesterol efflux and shed light on the mechanisms of cholesterol mobilization for efflux in macrophage foam cells.
|
435 |
Alterations in Lipid Metabolism and Exercise Performance During Passive Heat Exposure and Subsequent Exercise in the HeatO'Hearn, Katharine 15 January 2013 (has links)
Heat exposure causes several physiological and metabolic alterations. Although lipids are vital in sustaining energy production, heat-induced alterations in lipid metabolism have not been clearly established. CHAPTER 1 reviews the known metabolic alterations resulting from heat stress, with a specific focus on changes in whole-body lipid utilization and plasma lipids. CHAPTER 1also outlines the physiological changes caused by heat stress, and their role in reducing exercise performance. The study presented in CHAPTER 2 has shown that, compared to thermoneutral conditions, NEFA concentrations were 37% higher following passive heating and 34% higher following exercise in the heat, without significant changes in whole-body lipid utilization. In addition, the level of hyperthermia attained during passive pre-heating and exercise in the heat resulted in a 13% decrease in total external work and a significantly higher rate of perceived exertion. CHAPTER 3 summarizes the study results and presents the limitations and applications of the study.
|
436 |
Fluorescent and Photocaged Lipids to Probe the Ceramide-mediated Reorganization of Biological MembranesCarter Ramirez, Daniel Marcelo 23 January 2013 (has links)
This thesis describes the development of novel fluorescent and photocaged lipids, and their application as tools to probe the morphological effects of ceramide (Cer)-mediated membrane reorganization in supported lipid bilayers. Cer is a sphingolipid found in eukaryotic cells that plays a key role in regulating biological processes such as apoptosis, cell-to-cell communication, differentiation and some types of pathogenesis. Sphingolipid and cholesterol-rich lipid rafts in the plasma membrane are thought to be the point of origin for many of this lipid second messenger’s effects. Cer is formed in the exoplasmic leaflet of the plasma membrane via the enzymatic hydrolysis of sphingomyelin. The compositional complexity of biological membranes has prompted the adoption of simpler model systems to study the effects of Cer generation. When it is directly incorporated into model membranes, Cer segregates into highly ordered domains with physical properties that are distinct from those of the surrounding fluid environments. However, enzymatic generation of Cer induces complex and dynamic membrane heterogeneity that is difficult to interpret and reconcile with its direct incorporation. Here I describe the synthesis of 4-nitrobenzo-2-oxa-1,3-diazol-7-yl (NBD)-labelled cholesterol (Chol) and Cer analogs, and their use as probes in model membranes exhibiting liquid-disordered (Ld) and liquid-ordered (Lo) phase coexistence. The Chol probes reproduce the modest enrichment of Chol in Lo membrane domains as well as the Cer-induced displacement of cholesterol. One of the NBD Chol probes is used to provide direct visualization of Chol redistribution during enzymatic Cer generation, and assists in identifying new features as Cer-rich regions. The NBD-labelled Cer quantifies membrane order using orientational order parameter measurements derived from polarized total internal reflection fluorescence microscopy (pTIRFM) images. The probe reports on changes in membrane order upon enzymatic generation of Cer, and indicates a significant increase in the molecular order of Ld membrane regions that is consistent with the redistribution of Chol into these areas. The probe also identifies de novo Cer-rich domains as areas of particularly high molecular order. In the final project area, 6-Bromo-7-hydroxycoumarin-4-ylmethyl (Bhc)-caged Cers are shown to release Cer rapidly and efficiently upon irradiation with near-visible UV light. The caged lipids are then incorporated into supported membranes and photolyzed to release Cer with a high degree of spatial and temporal control. Controlled Cer generation is then used to drive protein-ganglioside clustering in lipid bilayers.
|
437 |
Development of New Supported Bilayer Platforms for Membrane Protein IncorporationMulligan, Kirk M. 15 April 2013 (has links)
Membranes are essential components of all living organisms forming the borders of cells and their organelles. Planar lipid membranes deposited on solid substrates (solid supported membranes) provide models to study the functions of membrane proteins and are used as biosensing platforms. However, despite remarkable progress, solid supported membranes are not stable to harsh conditions such as dehydration, high temperature and pressure, and mechanical stress. In addition, the direct deposition of membranes onto a solid substrate often causes restricted mobility and denaturation of reconstituted membrane proteins.
Membrane stability can be addressed by altering the structure of the component lipids. Bolalipids are an interesting class of bipolar lipids that have been proposed for biosensing applications. Membranes formed from mixtures of a bolalipid, C20BAS, and dioleoylphosphaphatidylcholine, POPC, were characterized by atomic force spectroscopy (AFM). The lipid mixtures produced a phase separated membrane consisting of thinner bolalipid-rich and thicker monopolar-rich POPC regions, with a height difference of approximately 1-2 nm. This confirmed an earlier prediction that some bolalipid/PC membranes would phase separate due to the hydrophobic mismatch between the two lipids. Interestingly, the surface coverage of the two phases was inconsistent with what one would expect from the initial starting lipid ratios. The complex membrane morphologies observed were accredited to the interplay of several factors, including a compositionally heterogeneous vesicle population, exchange of lipid between the vesicle solution and solid substrate during formation of the supported membrane, and slow equilibration of domains due to pinning of the lipids to the solid support.
Decoupling the membrane from its underlying surface is one strategy to maintain the structure and mobility of membrane proteins. This decoupling can be achieved by depositing the membrane on a soft cushion composed of a water swelling hydrophilic polymer. A polyelectrolyte multilayer (PEM) and a tethered poly(ethylene) glycol (PEG) polymer are the two types of polymer cushions used in this study. The PEMs consist of the charged polysaccharides, chitosan (CHI) and hyaluronic acid (HA) which offer the advantage of biocompatibility over synthetic PEMs. DOPC lipid bilayers were formed at pH 4 and 6.5 on (CHI/HA)5 films. At higher pH adsorbed lipids had low mobility and large immobile lipid fractions; fluorescence and AFM showed that this was accredited to the formation of poor quality membranes with defects and pinned lipids rather than to a layer of surface-adsorbed vesicles. However, more uniform bilayers with mobile lipids were produced at pH 4. Measured diffusion coefficients were similar to those for bilayers on PEG cushions and considerably higher than those measured on other polyelectrolyte films. The results suggest that the polymer surface charge is more important than the surface roughness in controlling formation of mobile supported bilayers.
The suitability of polymer supported membranes for the incorporation of integral membrane proteins was also assessed. The integral membrane protein Ste14p, a 26 kDa methyltransferase enzyme, was reconstituted into POPC membranes on PEM and PEG supports. A combination of fluorescence microscopy, FRAP, AFM and an in situ methyltransferase activity assay were utilized to characterize the protein incorporated polymer supported membranes. Fluorescence measurements showed that more protein was incorporated in model membranes formed on the PEG support, compared to either glass or PEM cushions. However, the protein activity on a PEG support was comparable to that of the protein in a membrane on glass. FRAP measurements showed that the lipid mobilities of the POPC:Ste14p bilayers on the various supports were also comparable.
Lastly, as a new platform for manipulating and handling membrane proteins, nanodiscs containing reconstituted Ste14p were studied. Nanodiscs are small, soluble and stable bilayer discs that permit the study of membrane proteins in a uniform phospholipid bilayer environment. Empty and protein containing nanodiscs were deposited on a mica surface and imaged by AFM. AFM showed that protein containing samples possessed two subpopulations of nanodiscs with a height difference of ~1 nm. The taller discs, ~20% of the population, contained protein. Other experiments showed that the packing of the nanodisc samples was influenced by their initial stock concentration and that both imaging force and the addition of Mg2+ caused formation of larger bilayer patches.
|
438 |
A Molecular Dynamics Simulation of Vesicle Deformation and Rupture in Confined Poiseuille FlowHarman, Alison 16 September 2013 (has links)
Vesicles are simple structures, but display complex, non-linear dynamics in fluid flow. I investigate the deformation of nanometer-sized vesicles, both fully-inflated and those with excess area, as they travel in tightly confined capillaries. By varying both channel size and flow strength, I simulate vesicles as they transition from steady-state to unstable shapes, and then rupture in strong flow fields. By employing a molecular dynamics model of the vesicle, fluid, and capillary system one is able to rupture the lipid bilayer of these vesicles. This is unique in that most other numerical methods for modelling vesicles are unable to show rupture. The rupture of fully-inflated vesicles is applicable to drug delivery in which the release of the encapsulated medicine needs to be controlled. The deformation and rupture of vesicles with excess area could be applicable to red blood cells which have similar rheological properties.
|
439 |
Developing Mass Spectrometry-Based Analytical Methodologies for Analyzing Complex Protein and Lipid SamplesHou, Weimin 18 September 2013 (has links)
Mass spectrometry has increasingly become the method of choice for the analysis of
complex biological samples, including proteins and lipids. This thesis describes the
development of MS-based analytical methodologies for the analysis of complex proteomic
and lipidomic samples.
Chapter 3 describes the development of microfluidic proteomic reactors, in the
formats of SCX reactor, SCX 96-well plate reactor, and SAX reactor, for the enzymatic
digestion of complex proteomic samples for subsequent LC-MS/MS analysis. These
microfluidic proteomic reactors greatly simplified the enzymatic digestion of complex
proteomic samples by combining multiple processing steps, such as rapid extraction and
enrichment of proteins. Furthermore, chemical and enzymatic treatments of proteins were all
performed in a few nanoliters effective volume, resulting in an increased protein digestion
efficacy. After the protein digestion process, the resulting peptides were eluted in buffers that
were compatible with HPLC-MS/MS analysis.
In chapter 4, a methodology based on nano-HPLC-ESI-MS/MS for the analysis of
PAF and LPC lipid species is described. In this method, lipid extracts from biological
samples were separated by nano-flow HPLC prior to being introduced into a Q-TRAP 2000
mass spectrometer, where the lipid species of interest were detected using a precursor ion
scan at m/z 184. Absolute quantitation of PAF family lipid species were performed with
standard addition method, where 5 standard solutions containing 0.2-1 ng each of C16:0,
C18:0 PAF and C16:0, C18:0 lyso-PAF were used in the experiment. Further, the spiking of
identical amount of non-endogenous C13:0 LPC at time of extraction allow the relative
comparisons of other LPC lipid species of interest between different samples. The developed
methods were employed to analyze the changes of PAF and LPC lipid species in NGFdifferentiated
PC12 cells, in the posterior/entorhinal cortex of AD patients and TgCRND8
transgenic mice, and over the course of 24 hour exposure of human hNT neurons to Aβ42
treatment, respectively, in comparison to controls.
iii
Chapter 5 describes the development of a novel shotgun lipidomic methodology for the determination of stereospecificity of diacyl glycerophospholipids including glycerophosphatidic acids (PA), glycerophosphoserines (PS), glycerophosphoglycerols (PG), glycerophosphoinositols(PI), and glycerophosphoethanolamines (PE), which can be conventionally ionized under negative ion mode. The stereospecificity of diacyl glycerophospholipids was determined based on the relative abundance of the lyso-form fragment ions, attributed to the neutral loss of fatty acyl moieties. The fragmentation patterns of a variety of diacyl glycerophospholipid standards were first fully examined over a wide range of collision energy. We observed that lyso-form fragment ions corresponding to the neutral loss of fatty acyl moieties attached to the sn2 position as free fatty acids ([M-Sn2]-) and as ketenes ([M-(Sn2-H2O)]-) exhibited consistently higher intensity than their counter part ions due to the neutral loss of fatty acyl moieties attached to the sn1 position ([M-Sn1]- and [M-(Sn1-H2O)]-). We then examined the product ion spectra of diacyl glycerophospholipids recorded from lipid extracts of rat hepatoma cells, where the stereospecific information of these lipids was conclusively determined.
|
440 |
Dosage ranging effect and safety evaluation of conjugated linoleic acid (CLA) in a hamster modelLiu, Xiaoran 09 September 2010 (has links)
The objectives of this study was to examine the efficacy and safety of graded doses of c9, t11, t10, c12 CLA isomers on body composition, energy expenditure, lipid profile and hepatic biomarkers in hamsters. Male Golden Syrian hamsters (n=105) were randomized to seven treatments (control; 1, 2, 3% of c9, t11; 1, 2, 3% of t10, c12) for 28 days. Compared with control, 1% and 3% t10, c12 had lowered food intake with all three doses of t10, c12 lowering (p<0.0001) body fat mass (g). Groups fed with 1, 2, 3% t10, c12 and 3% c9, t11 treatments showed higher lean mass compared to control and other treatment groups. However, neither body weights, nor serum HDL or triglyceride levels differed across treatment groups. The 3% t10, c12 groups exhibited higher (p<0.0001) cholesterol and LDL-C levels compared to control or other treatment groups. The 2% and 3% t10, c12 groups also presented elevated ALT level (p<0.05). The present data suggest that 3% t10, c12 possess potential adverse effects on liver and posing unfavorable change in lipid profile.
|
Page generated in 0.136 seconds