• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 13
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micronization of Polyethylene Wax in an Extrusion Process using Supercritical Carbon Dioxide

Abedin, Nowrin Raihan 22 September 2011 (has links)
Supercritical fluid technology is a well documented and emergent technology used in many industries today for the formation of micro- and nano- particles. The use of supercritical fluids allows synthesis of various types of particles since their properties can be varied with temperature or pressure, which sequentially can control the physical and chemical properties of the particles produced. Several different processes designed to generate powders and composites using supercritical fluids have been proposed in the past 20 years which can be used to synthesize materials with high performance specifications and unique functionality. In this research work, an extrusion micronization process using supercritical fluid has been proposed. This powder production technique could be a promising alternative to conventional techniques in terms of improvement in product quality as it provides a better control over particle size, morphology and particle size distribution, without degradation or contamination of the product. In addition, as extrusion is globally used for polymer production and processing, particle production by extrusion will allow production and processing in a single process step, eliminating the need for secondary particle production methods. The micronization process designed and described in this thesis involves a twin screw extruder equipped with a converging die and a high resistance spraying nozzle for particle production. A special CO2 injection device and polymer collection chamber was designed for CO2 supply and powder collection. To ensure complete dissolution of CO2 into the polymer matrix, stable injection of CO2, pressure generation and constant spray of micronized polymer particles, a special screw configuration was carefully designed for the extrusion process. The feasibility and the performance of this process have been demonstrated by experimental studies performed with low molecular weight polyethylene wax. Carbon dioxide at supercritical conditions was used as a solvent for processing the polymer. The generated polyethylene particles from the polyethylene wax/carbon dioxide solution system were analyzed and studied using an optical microscope, scanning electron microscope, capillary rheometer and differential scanning calorimeter. A detailed study on the effects of the processing parameters, such as temperature, pressure, flow rate and supercritical fluid on properties of polyethylene particle produced was carried out. The particle size data collected using an optical microscope indicate a significant impact of temperature and CO2 content on particle size. The obtained size data were utilized to generate particle size distribution plots and studied to analyze the effect of the processing variables. It was found that particle size distribution is affected by processing temperature and CO2 content. Studies of the SEM images reveal that the morphology of particles can be controlled by varying processing variables like temperature, polymer feed rate and CO2 content. The particles generated during this study indicate that particle production in an extrusion process using supercritical carbon dioxide is achievable and appears to be a promising alternative to conventional polymer particle production methods such as grinding, milling and other supercritical fluid-based precipitation methods. To validate and generalize the applicability of this process, micronization of other polymeric material should be performed. Commercialization of this technology will further require predictability and consistency of the characteristics of the product, for which a detailed understanding of the influence of all relevant process variables is necessary. In addition, development of theoretical models will further assist in the scale-up and commercialization of this supercritical fluid assisted micronization technology in the near future.
2

Micronization of Polyethylene Wax in an Extrusion Process using Supercritical Carbon Dioxide

Abedin, Nowrin Raihan 22 September 2011 (has links)
Supercritical fluid technology is a well documented and emergent technology used in many industries today for the formation of micro- and nano- particles. The use of supercritical fluids allows synthesis of various types of particles since their properties can be varied with temperature or pressure, which sequentially can control the physical and chemical properties of the particles produced. Several different processes designed to generate powders and composites using supercritical fluids have been proposed in the past 20 years which can be used to synthesize materials with high performance specifications and unique functionality. In this research work, an extrusion micronization process using supercritical fluid has been proposed. This powder production technique could be a promising alternative to conventional techniques in terms of improvement in product quality as it provides a better control over particle size, morphology and particle size distribution, without degradation or contamination of the product. In addition, as extrusion is globally used for polymer production and processing, particle production by extrusion will allow production and processing in a single process step, eliminating the need for secondary particle production methods. The micronization process designed and described in this thesis involves a twin screw extruder equipped with a converging die and a high resistance spraying nozzle for particle production. A special CO2 injection device and polymer collection chamber was designed for CO2 supply and powder collection. To ensure complete dissolution of CO2 into the polymer matrix, stable injection of CO2, pressure generation and constant spray of micronized polymer particles, a special screw configuration was carefully designed for the extrusion process. The feasibility and the performance of this process have been demonstrated by experimental studies performed with low molecular weight polyethylene wax. Carbon dioxide at supercritical conditions was used as a solvent for processing the polymer. The generated polyethylene particles from the polyethylene wax/carbon dioxide solution system were analyzed and studied using an optical microscope, scanning electron microscope, capillary rheometer and differential scanning calorimeter. A detailed study on the effects of the processing parameters, such as temperature, pressure, flow rate and supercritical fluid on properties of polyethylene particle produced was carried out. The particle size data collected using an optical microscope indicate a significant impact of temperature and CO2 content on particle size. The obtained size data were utilized to generate particle size distribution plots and studied to analyze the effect of the processing variables. It was found that particle size distribution is affected by processing temperature and CO2 content. Studies of the SEM images reveal that the morphology of particles can be controlled by varying processing variables like temperature, polymer feed rate and CO2 content. The particles generated during this study indicate that particle production in an extrusion process using supercritical carbon dioxide is achievable and appears to be a promising alternative to conventional polymer particle production methods such as grinding, milling and other supercritical fluid-based precipitation methods. To validate and generalize the applicability of this process, micronization of other polymeric material should be performed. Commercialization of this technology will further require predictability and consistency of the characteristics of the product, for which a detailed understanding of the influence of all relevant process variables is necessary. In addition, development of theoretical models will further assist in the scale-up and commercialization of this supercritical fluid assisted micronization technology in the near future.
3

Addition of micronized black bean (Phaseolus vulgaris) flour improves sensory qualities of low fat beef burgers

Nicholson, Tiffany 10 September 2013 (has links)
Dehulled black beans were micronized at 90⁰C, 100⁰C, 110⁰C, 120⁰C, 130⁰C and 140⁰C; milled to flour and tested for lipoxygenase activity. Non micronized black bean flour was higher in lipoxygenase activity than flours at ≥120ºC (p=≤0.05). Micronized (100⁰C, 110⁰C, 120⁰C) and non micronized black bean flour was added to low fat beef burgers (6%). C18:3 was significantly higher in the black bean flour samples (raw and cooked). Whole wheat flour had the highest amount of C18:2 in all samples (p= ≤0.05). The all beef control was significantly higher in Newton value, drip loss, cook loss and percent shrinkage compared to burgers with binders (p= ≤0.05). Ninety-three participants participated in an consumer sensory panel. Results showed higher acceptability of micronized burgers compared to all beef or whole wheat flour controls. This study demonstrated incorporation of black bean flour into low fat beef burgers can improve their physical, chemical and sensory properties.
4

Effects of micronization, ethanol washing, and enzymatic hydrolysis processing alone or in combination on trypsin inhibitors, lipoxygenase activities and selected “beany” flavour related compounds in soybean flour

Chen, Yuming Jr 19 June 2015 (has links)
Soybean production and consumption has increased in recent decades. However, trypsin inhibitor activity and “beany” flavour are two drawbacks limiting the utilization of soybean. In the present study, micronization, ethanol washing, and enzymatic hydrolysis (alone or in combination) were used to treat soybean. Micronization at 100 °C and 135 °C decreased the activity of both trypsin inhibitors (53% and 80% respectively), and lipoxygenase (51% and 99%, respectively). Ethanol increased the trypsin inhibitor activity while alcalase hydrolysis decreased its activity. Different treatment combinations affected trypsin inhibitor activity, with micronization having a major influence. “Beany” flavour related volatiles (hexanal, (E)- 2-hexenal, 1-hexanol, heptanal, (E)-2-octenal, (E)-2-nonenal, (E,E)-2,4-nonadienal, 2,4-decadienal, (E,E)-2,4-decadienal, 1-octen-3-ol, 2-pentylfuran and 3-octen-2-one) were significantly decreased with micronization. Ethanol effects varied with different volatiles. Soybean micronized at 135°C and washed with 65% ethanol was recommended for soybean processing due to its low trypsin inhibitor activity and low “beany” related volatile content.
5

Effects of seed moisture and micronizing temperature on lentil flour properties and the stabilities of colour and unsaturated lipids of beef-lentil systems

2014 June 1900 (has links)
This study investigated the effect of seed moisture level of lentil and surface temperature of micronization (infrared heat treatment) on the physico-chemical and functional properties of resulting flours and how these flours affected colour and unsaturated lipid oxidation when incorporated into ground beef products. Flour from raw seed (non-tempered and non-micronized) was used as the control. Whole seeds of small green lentil (Lens culinaris L., var. Eston) without tempering (8% moisture) and tempered to 16% or 23% moisture was infrared heat treated (micronized) to 115, 130, 150 or 165 °C surface temperature. The decreased protein solubility (2-60%) and lipoxygenase (70-100%), peroxidase (32-100%) and trypsin inhibitory (up to 54%) activities of resulting flours indicated changes in the protein fraction due to heat-moisture treatment. Starch gelatinization was observed at the 23% moisture level and changes in pasting properties, and water and oil absorption capacities varied with treatment. The heat-moisture combinations modified properties of starch and protein to different degrees and, consequently, lentil flour functionalities. Incorporation of lentil flour as a binder in low fat (<10%) beef burgers at 6% (w/w) showed that flours from micronized lentil seeds enhanced retention of redness and suppression of lipid oxidation as indicated by Hunter a* values and thiobarbituric acid reactive substances values, respectively, in a retail display setting. Investigation of total phenolics in aqueous salt extracts of lentil flours showed a decrease in content with increased micronization temperature. The antioxidant assays showed no changes in the ferric ion reducing power or reduction of hydroxyl radical scavenging and superoxide radical scavenging activities with heat-moisture treatment. Reduction of lipoxygenase and peroxidase activities was evident in lentil flour aqueous salt extracts, and the enzyme activities were localized to seed cotyledons. The myoglobin-liposome model study showed that a flour extract from the 16% moisture and 150 °C treatment resulted in a slower rate of oxymyoglobin oxidation initiation than other treatments which had different levels of lipoxygenase and peroxidase activities. Unsaturated lipids accelerated oxymyoglobin degradation irrespective of the presence of lentil extract. The extended fresh red colour retention of ground beef due to addition of flours from micronized seed compared to that from non-micronized seed may be related to suppression of pro-oxidant activities and the activity of potential antioxidants. The putative antioxidative compounds in lentil that are available for meat components may include compounds other than lentil seed phenolics.
6

Addition of micronized black bean (Phaseolus vulgaris) flour improves sensory qualities of low fat beef burgers

Nicholson, Tiffany 10 September 2013 (has links)
Dehulled black beans were micronized at 90⁰C, 100⁰C, 110⁰C, 120⁰C, 130⁰C and 140⁰C; milled to flour and tested for lipoxygenase activity. Non micronized black bean flour was higher in lipoxygenase activity than flours at ≥120ºC (p=≤0.05). Micronized (100⁰C, 110⁰C, 120⁰C) and non micronized black bean flour was added to low fat beef burgers (6%). C18:3 was significantly higher in the black bean flour samples (raw and cooked). Whole wheat flour had the highest amount of C18:2 in all samples (p= ≤0.05). The all beef control was significantly higher in Newton value, drip loss, cook loss and percent shrinkage compared to burgers with binders (p= ≤0.05). Ninety-three participants participated in an consumer sensory panel. Results showed higher acceptability of micronized burgers compared to all beef or whole wheat flour controls. This study demonstrated incorporation of black bean flour into low fat beef burgers can improve their physical, chemical and sensory properties.
7

THE EFFECT OF SEED TEMPERING AND MICRONIZATION TEMPERATURE ON THE PHYSICOCHEMICAL PROPERTIES OF CHICKPEA FLOUR AND ITS PERFORMANCE AS A BINDER IN LOW-FAT PORK BOLOGNA

2014 April 1900 (has links)
The overall goal of this research was to investigate the effect of seed tempering moisture and micronization temperature on the physicochemical properties of chickpea flour and its subsequent performance as a binder in a model low-fat pork bologna product. This work was divided into three studies. In the first study, the effect of seed tempering moisture (untempered (7% moisture) or tempered to 15 or 22% moisture) and surface micronization temperature (115, 130, 150 or 165oC) and on the physical, chemical and functional properties of chickpea flour were investigated. Chickpea flour became darker as seed moisture or micronization temperature increased. Increasing the micronization temperature at 22% seed moisture increased starch gelatinization from 8.2 to 34.0%. The lipoxygenase activity of chickpea flour also was reduced by micronization of seed. Lipoxygenase activity in flour from non-micronized seed and flour from seed micronized at 115oC without tempering was determined to be 1.98×105 and 1.12×105 units/g of protein, respectively, with no activity found in any other treatments. There was an increase in the water holding (WHC) and oil absorption capacity (OAC) of flour when chickpea seed was tempered to 22% moisture before micronization. Flour from untempered seed and from seed tempered to 15% moisture exhibited small increases in WHC as micronization temperature increased. Micronization had no effect on the OAC of untempered flours, whereas OAC decreased in flour from seed tempered to 15% moisture at higher micronization temperatures. Rapid visco-analysis (RVA) revealed that peak viscosity and final viscosity of all flours from tempered seed decreased with increasing micronization temperature, whereas the trend for both peak viscosity and final viscosity was in the opposite direction with untempered seed. The effect of seed tempering moisture and micronization temperature on the performance of chickpea flour as a binder in a low-fat, comminuted meat product (i.e., low-fat bologna) was investigated in study 2. Both the textural and sensory properties (trained sensory panel, n=12) of the bologna (10% fat) were explored. In study 3, a consumer panel was performed with 101 untrained participants evaluating selected formulations in order to better understand consumer purchasing behaviour as it relates to comminuted meat products containing a pulse-based binder. Bologna containing flour from micronized chickpea was more yellow in colour (CIE system, trained panel and consumer panel evaluation) compared to those with added wheat flour or no binder. There was no effect of tempering or micronization conditions on cook loss or expressible moisture of bologna containing chickpea flour, whereas bologna produced with wheat flour had the greatest WHC among all bologna treatments. Texture profile analysis (TPA) showed that the addition of chickpea flour from seed tempered to 15% or 22% seed moisture and micronized to 115, 130 or 150oC or flour from untempered seed micronized to 130 or 150oC led to an increase in hardness to a level similar to that of bologna containing wheat flour; sensory evaluation by the trained panel did not produce a similar result. A difference in flavour intensity was not found among all bolognas containing chickpea flour during sensory evaluation. Bologna produced with chickpea flour from seed micronized to 150oC and from seed tempered to 22% moisture and micronized to 115oC was comparable to bologna containing wheat flour with respect to overall texture, overall juiciness and flavour acceptability. These results demonstrated that selection of appropriate seed tempering conditions and micronization temperatures is important with respect to the utilization of chickpea flour as a binder in low-fat bologna.
8

Effect of micronization on selected volatiles of chickpea and lentil flours and sensory evaluation of low fat beef burgers extended with these micronized pulse flours

Shariati-Ievari, Shiva 11 September 2013 (has links)
The effect of micronization (at 130 and 150 °C) as a potential heat treatment to reduce ‘beany’ aroma and flavor of cooked chickpea (Cicer arietinum) and green lentil (Lens culinaris) flours was investigated. A simultaneous distillation solvent extraction method was developed to extract key volatile compounds with potential contribution to ‘beany’ aroma and flavor notes in micronized pulse flours and analyzed by gas chromatography-mass spectrometry. Concentrations of volatile compounds such as pentanol, hexanal, 2-hexenal, hexanol, heptanal, furan-2-pentyl, 2-octenal, nonanal, 2,4 decadienal, and 2,4- undecadienal were significantly (P<0.05) decreased with micronization. Low fat burgers fortified with 6% micronized chickpea and green lentil flours showed significantly higher acceptability for aroma, flavor, texture, color and overall acceptability (p<0.05) compared to non-micronized samples in a consumer acceptability test with 101 consumers. In addition, fatty acid analysis of burgers showed burgers containing micronized pulses had higher level of linoleic and linolenic acid content.
9

Effect of micronization on selected volatiles of chickpea and lentil flours and sensory evaluation of low fat beef burgers extended with these micronized pulse flours

Shariati-Ievari, Shiva 11 September 2013 (has links)
The effect of micronization (at 130 and 150 °C) as a potential heat treatment to reduce ‘beany’ aroma and flavor of cooked chickpea (Cicer arietinum) and green lentil (Lens culinaris) flours was investigated. A simultaneous distillation solvent extraction method was developed to extract key volatile compounds with potential contribution to ‘beany’ aroma and flavor notes in micronized pulse flours and analyzed by gas chromatography-mass spectrometry. Concentrations of volatile compounds such as pentanol, hexanal, 2-hexenal, hexanol, heptanal, furan-2-pentyl, 2-octenal, nonanal, 2,4 decadienal, and 2,4- undecadienal were significantly (P<0.05) decreased with micronization. Low fat burgers fortified with 6% micronized chickpea and green lentil flours showed significantly higher acceptability for aroma, flavor, texture, color and overall acceptability (p<0.05) compared to non-micronized samples in a consumer acceptability test with 101 consumers. In addition, fatty acid analysis of burgers showed burgers containing micronized pulses had higher level of linoleic and linolenic acid content.
10

Extração, micronização e estabilização de pigmentos funcionais = construção de uma unidade multipropósito para desenvolvimento de processos com fluídos pressurizados / Extractionm micronization and stabilization of functional pigments : construction of multipurpose unit for pressurized fluid process development

Santos, Diego Tresinari dos, 1985- 17 August 2018 (has links)
Orientador: Maria Angela de Almeida Meireles / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-17T10:13:29Z (GMT). No. of bitstreams: 1 Santos_DiegoTresinaridos_D.pdf: 5800925 bytes, checksum: 355208e3c8e107bfa760e2e6b7f00d0d (MD5) Previous issue date: 2011 / Resumo: A indústria de alimentos está constantemente à procura de compostos que apresentam propriedades físicas e químicas para melhorar seus produtos. A maioria destes compostos são aditivos com propriedades antioxidantes, corantes ou aditivos com efeitos positivos sobre a saúde humana. Aditivos naturais são sempre preferíveis aos compostos sintéticos. Flavonóides e carotenóides são duas das principais classes de pigmentos funcionais pelas quais as indústrias de alimentos, cosmética e farmacêutica têm apresentado maior interesse. No entanto, estes compostos apresentam uma série de limitações ao serem aplicados em produtos processados. Diversos fatores, tais como luz, temperatura, pH, entre outros, desencadeiam a degradação oxidativa destes pigmentos funcionais limitando não só a aplicação final destes, mas também restringindo toda a cadeia do processo: desde a escolha do método de extração do pigmento da fonte vegetal até o tratamento que o produto formulado irá sofrer após a sua formulação passando pela escolha do método de redução do tamanho e/ou encapsulação das partículas visando a melhora da taxa de dissolução, biodisponibilidade e estabilidade destes compostos. Tecnologias de extração, micronização e estabilização de pigmentos funcionais por encapsulação em matrizes poliméricas utilizando fluidos pressurizados podem representar uma alternativa ambientalmente correta, uma vez que estão incluídas no conceito de "química verde" e do desenvolvimento sustentável, e economicamente viável em relação aos respectivos métodos convencionais, onde grandes quantidades de solventes orgânicos, longos tempos de processo e altas temperaturas são requeridas, o que pode promover a degradação, isto é, perda de cor e capacidade antioxidante, condições estas normalmente utilizadas nos processos convencionais. Adicionalmente, processos de extração e formação de partículas utilizando fluidos supercríticos permitem um fácil e eficiente controle do processo através de pequenas variações nas condições de operação (Pressão, Temperatura, etc.). Apesar de comercialmente encontrarem-se disponíveis equipamentos distintos para cada processo mencionado uma unidade para pesquisa que possibilite o estudo de diferentes processos com fluidos pressurizados proporcionaria uma melhor relação custo-benefício associada a esta tecnologia. Portanto, uma unidade multipropósito para o desenvolvimento de processos com fluidos pressurizados que possibilite a extração e formação de partículas de pigmentos funcionais, bem como de outros compostos bioativos em um único equipamento foi projetada, construída e testada. Processos de extração utilizando CO2 supercrítico ou líquidos pressurizados como solventes, assistidos por dióxido de carbono a alta pressão; de formação de partículas encapsuladas ou não via RESS (Rapid Expansion of Supercritical Solutions) e SAS (Supercritical fluid Anti-Solvent) foram desenvolvidos na unidade multipropósito produzindo resultados semelhantes aos obtidos por equipamentos similares, reprodutíveis e melhores do que quando utilizando processos convencionais / Abstract: The food industry is continuously searching compounds that present physical and chemical properties to improve their products. Most of them are additives with antioxidant properties, colorants or additives with positive effects to human health. Natural additives are always preferred to synthetic compounds. Flavonoids and carotenoids are two of the major functional pigments class that food, cosmetic and pharmaceutical industries are more interested recently. Nevertheless, these compounds present a series of limitations when applied to processed products. Several factors, such as light, temperature, pH, among others, trigger the oxidative degradation of theses functional pigments limiting not only their final applications, but also restricting all the process chain: from the choice of the extraction method of the pigment from the vegetable source, passing through the choice of the particle reduction and/or encapsulation technique aiming the improvement of the dissolution rate, biodisponibility and stability of these compounds. Technologies for extraction, micronization and stabilization of functional pigments into polymeric matrices using supercritical fluids may represent an environmentally friend alternative, once they are inserted in the concept of green chemistry and sustainable development, and economically viable comparing to conventional methods, wherein large amounts of organic solvents, long process time and high temperatures are required, that can promote degradation, i. e., color and antioxidant activity loss, conditions normally employed on conventional processes. Moreover, extraction and particle formation processes utilizing supercritical fluids permit an easy and efficient process control with little variation on operational conditions (Pressure, Temperature, etc.). Despite distinct commercial equipments are available to carry out each mentioned process a unit for research that can be used to carry out different processes with pressurized fluids would lead to a better cost-benefit relation associated to this technology. Therefore, a multipurpose unit to develop processes with pressurized fluids that can be used for extraction and particle formation purposes of functional pigments, as well as of other bioactive compounds using the same apparatus was designed, constructed and tested. Extraction processes using supercritical CO2, employing pressurized liquid solvents, assisted by high pressure carbon dioxide; particle formation processes to obtain encapsulated or non encapsulated particles via RESS (Rapid Expansion of Supercritical Solutions) and SAS (Supercritical Anti-Solvent) were done using the multipurpose unit producing comparable experimental results to those obtained by similar equipments. Good reproducibility and better results than those obtained using conventional processes were observed employing our home-made apparatus / Doutorado / Doutor em Engenharia de Alimentos

Page generated in 0.1062 seconds