• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules

Taylor, Ryan M 01 July 2014 (has links) (PDF)
Biological research has benefitted greatly from the advent of omic methods. For many biomolecules, mass spectrometry (MS) methods are most widely employed due to the sensitivity which allows low quantities of sample and the speed which allows analysis of complex samples. Improvements in instrument and sample preparation techniques create opportunities for large scale experimentation. The complexity and volume of data produced by modern MS-omic instrumentation challenges biological interpretation, while the complexity of the instrumentation, sample noise, and complexity of data analysis present difficulties in maintaining and ensuring data quality, validity, and relevance. We present a corpus of tools which improves quality assurance capabilities of instruments, provides comparison abilities for evaluating data analysis tool performance, distills ideas pertinent in MS analysis into a consistent nomenclature, enhances all lipid analysis by automatic structural classification, implements a rigorous and chemically derived lipid fragmentation prediction tool, introduces custom structural analysis approaches and validation techniques, simplifies protein analysis form SDS-PAGE sample excisions, and implements a robust peak detection algorithm. These contributions provide improved identification of biomolecules, improved quantitation, and improve data quality and algorithm clarity to the MS-omic field.
2

Oxidative lipid fragmentation; New mechanisms, synthesis and reactions of putative intermediates

Gu, Xiaodong 30 July 2010 (has links)
No description available.

Page generated in 0.1362 seconds