• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Liquid Holdup in Vertical Air/Water Multiphase Flow with Surfactant

Akor, Innocent Collins January 2013 (has links)
No description available.
2

The Morphology of Trickle Flow Liquid Holdup

Van der Merwe, Werner 16 February 2005 (has links)
Gravity driven trickle flow of a liquid over a fixed bed in the presence of a gaseous phase is widely encountered throughout the process industry. It is one of the most common ways of contacting multi-phase fluids for reaction or mass transfer purposes. The presence of three phases greatly complicates the mathematical modelling of trickle-bed reactors and makes a description from first principles difficult. Trickle flow performance is usually characterized in terms of hydrodynamic parameters. One such parameter is the liquid holdup. The value and morphology (shape or texture) of the holdup influences the catalyst contacting, wetting, mass transfer characteristics and ultimately the performance of the trickle flow unit. This study is limited to the air-water-glass spheres system with no gas flow. It is partitioned into three sections. An investigation into the nature of the residual liquid holdup in beds of spherical particles revealed that the general assumption that all residual liquid is held in the form of pendular rings at particle contact points proves to be untrue. Instead, indication is that 48 % of the residual holdup is present in the form of agglomerated liquid globules in interstices of low local porosity. Theoretical residual liquid holdup models and residual liquid holdup-based mass transfer models should include this phenomenon. In a subsequent section, the influence of the prewetting procedure on the operating holdup is investigated. Three distinct limiting cases are identified: Kan-wetted, Levec-wetted and non-wetted. A volumetric utilization coefficient that describes the extent to which the bed is irrigated is developed. It indicates that large fractions of the bed remain non-irrigated in the Levec- and non-wetted modes. A momentum balance-based model is adopted to predict the Kan-wetted mode holdup. This model was successfully extended to predicting the holdup in the Levec- and non-wetted modes by simple incorporation of the volumetric utilization coefficient. The predictive capability of this model is highly satisfactory, especially in light of it using only the classical Ergun constants and no fitted parameters (AARE = 9.6 %). The differences in the hysteresis behaviour of holdup and pressure drop in the different modes are attributed to differences in the morphology of the operating holdup. The existence of the three limiting prewetted modes is confirmed by residence time distribution (RTD) analysis of the stimulus-response behaviour of the system. This behaviour was quantified using a NaCl tracer and conductivity measurements at both the inlet and outlet of a bench scale bed. The analyses show that: · There are large fractions of the holdup that is inaccessible to the tracer in the Levec-wetted and non-wetted modes. · The mixedness in the three prewetted modes differ appreciably, with the Kan-wetted mode clearly less mixed than the Levec-wetted mode. The RTD analyses also confirm the existence of the three prewetting modes in a porous system (spherical a-alumina), with a large fraction of the holdup being inaccessible to the tracer in the Levec-wetted mode. This study emphasizes the role of the morphology of the various types of liquid holdup on the hydrodynamic performance of a trickle flow unit. It is apparent that aspects of the morphology depend strongly on phenomena like globule formation, hysteresis and flow and prewetting history that have not been adequately recognized to date. The visualization of the various modes of trickle flow is an intellectual platform from which future studies may be directed. / Dissertation (MEng)--University of Pretoria, 2004. / Chemical Engineering / Unrestricted
3

A study of slug flow characteristics in large diameter horizontal multiphase pipelines

Maley, Lisa January 1997 (has links)
No description available.
4

The effect of Prewetting on the Pressure Drop, Liquid Holdup and Gas-Liquid Mass Transfer in Trickle-Bed Reactors

Loudon, Dylan 02 May 2006 (has links)
The prewetting of a trickle-bed reactor has important implications in the design and operation of these reactors. This is because the prewetting changes the flow morphology (shape and texture) of the liquid flowing through the bed and leads to the existence of multiple hydrodynamic states. The extent of this change in flow morphology can be seen in the effect the prewetting of the reactor has on the pressure drop, liquid holdup and gas-liquid mass transfer. The following prewetting procedures were used: -- Levec-wetted: the bed is flooded and drained and after residual holdup stabilisation the gas and liquid flow is reintroduced -- Kan-wetted: the bed is operated in the pulse flow regime and liquid and gas flow rates are reduced to the desired set point -- Super-wetted: the bed is flooded and gas and liquid flow are introduced once draining commences For the pressure drop: -- The different prewetting procedures resulted in two distinct regions (Upper region Kan and Super-wetted, Lower region Dry and Levec-wetted) -- There was no significant difference between the Dry and Levec-wetted beds -- The pressure drop in the Kan and Super-wetted beds can be as much as seven times greater than the pressure drop in the Dry and Levec-wetted beds For the liquid holdup: -- The different prewetting procedures resulted in four distinct regions (Kan-wetted, Super-wetted, Levec-wetted, Dry bed) -- The liquid holdup in the Kan-wetted bed can be as much as four times greater than the liquid holdup in the Dry bed -- The liquid holdup in the Levec-wetted can be as much as thirty percent lower than the liquid holdup in the Kan-wetted bed For the gas-liquid mass transfer: -- The different prewetting procedures resulted in three distinct regions (Kan and Super-wetted, Levec-wetted, Dry bed) -- The volumetric gas-liquid mass transfer coefficient in the Kan and Super-wetted beds can be as much as six times greater than the mass transfer coefficient in the Dry bed -- The volumetric gas-liquid mass transfer coefficient in the Kan and Super-wetted beds can be as much as two and a half times greater than the mass transfer coefficient in the Levec-wetted bed While an increase in the liquid flow rate results in an increase in the pressure drop, liquid holdup and gas-liquid mass transfer for all of the experiments, the effect of increasing gas flow on the measured variables were more pronounced for the prewetted beds. In a prewetted bed (Kan, Super and Levec-wetted) an increase in the gas flow rate causes an increase in the volumetric gas-liquid mass transfer coefficient and a decrease in the liquid holdup. The decrease in the liquid holdup is due to the fact that the increased gas flow rate causes the films around the particles to thin and spread out. In the dry bed the flow is predominantly in the form of rivulets and the increase in gas flow rate does not affect the liquid holdup. In the case of the volumetric gas-liquid mass transfer coefficient the increased gas flow rate causes an increase in the mass transfer coefficient regardless of the prewetting procedure. This increase is due to the effect that the gas flow rate has on the liquid holdup as well as the increase in the gas-liquid interfacial area due to the increased gas-liquid interaction. If the pulsing in the Kan-wetted bed is induced by increasing the gas flow rate and keeping the liquid flow rate constant the results are significantly different. The pressure drop in the gas-pulsing experiments was lower than the pressure drop in the recorded in the Kan and Super-wetted beds, but higher than the pressure drop in the dry and Levec-wetted beds. However, the liquid holdup in the gas-pulsing experiments was higher than the liquid holdup in any of the other beds. The volumetric gas-liquid mass transfer coefficient in the gas-pulsing experiments was lower than the mass transfer coefficients of the Kan and Super-wetted beds, but higher than the mass transfer coefficients in the dry and Levec-wetted beds. The multiple operating points obtained from the different prewetting procedures are by no means the only possible operating points. By simply decreasing the draining time in the Levec-wetted bed steady state operating points can be found between those of the Super and Levec-wetted beds. This alludes to the fact that the operating conditions determined from the different prewetting modes are only boundaries and that the actual operating point can lie anywhere between these boundaries. The existence of these multiple hydrodynamic states complicates things further when a correlation is developed to determine the pressure drop, liquid holdup or the volumetric gas-liquid mass transfer coefficient. No correlation tested was able to accurately predict the pressure drop, liquid holdup or volumetric gas-liquid mass transfer coefficient in the dry or prewetted beds. / Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2007. / Chemical Engineering / unrestricted
5

Summary of Laboratory Multiphase Flow Studies in 2” Diameter Pipe at the University of Dayton and Comparison to OLGA Predictions

Duran, Tibo 03 June 2015 (has links)
No description available.
6

Etude de l'écoulement ruisselant dans les lits fixes par tomographie à rayons X

Toye, Dominique 17 January 1997 (has links)
Lobjet du présent travail est létude expérimentale et théorique de lhydrodynamique des écoulements dans des colonnes à garnissage et, plus particulièrement, lanalyse par tomographie à rayons X de la distribution spatiale des phases liquide et solide dans des lits fixes parcourus par un écoulement de liquide. La distribution des phases est observée à différents niveaux, depuis léchelle locale jusquà léchelle de la colonne dans son ensemble. Lintroduction permet tout dabord de rappeler les principales applications industrielles des colonnes à garnissage, ainsi que les caractéristiques particulières associées à chacune dentre elles. Lhydrodynamique des écoulements dans ce type dappareils résulte de phénomènes extrêmement complexes, intervenant à une échelle très petite. Cet état de choses a poussé les chercheurs à développer des modèles de plus en plus détaillés, dont la validation requiert une connaissance de plus en plus fine de la répartition des phases au sein des lits fixes. Lobtention de mesures à une échelle très locale savère donc indispensable. Après un bref rappel des différentes techniques de mesure plus ou moins locales qui ont été appliquées, dans le passé, à létude des écoulements dans des colonnes à garnissage, lensemble des techniques tomographiques, ainsi que leurs principaux champs dapplication sont présentés. Parmi ces applications, la tomographie à rayons X semble particulièrement bien adaptée, car elle permet daccéder à une cartographie complète de la distribution spatiale des différentes phases présentes dans une colonne à garnissage de relativement grandes dimensions. Le chapitre I présente en détail les bases de la technique expérimentale utilisée. La tomographie consiste à reconstruire limage dune section droite dun objet à partir de données de transmission, obtenues en illuminant cet objet sous un grand nombre dangles différents. Lalgorithme permettant de reconstruire les images à partir des données de projection est lalgorithme de rétro-projection filtrée, adapté à la géométrie du dispositif de radiographie (faisceau plan angulaire et détecteurs colinéaires équidistants). Cet algorithme, qui est le plus utilisé en pratique, a dû être modifié pour tenir compte dimperfections géométriques existant au niveau du dispositif de mesure. Le chapitre II décrit linstallation expérimentale, qui comprend le tomographe à rayons X, la colonne à garnissage et leurs éléments périphériques respectifs. Le tomographe consiste en un dispositif de radiographie (source de rayons X et détecteur linéaire) fixé sur un manipulateur. Le pilotage de linstallation, ainsi que lacquisition des données expérimentales sont réalisés grâce à un pupitre de commande et à un P.C. Le dispositif de tomographie permet de réaliser des images de sections droites dune colonne à garnissage, irriguée grâce à un dispositif dalimentation et dévacuation des fluides. Après une description relativement détaillée de tous ces éléments, le mode opératoire suivi pour la réalisation des différentes mesures expérimentales est présenté. Dans les chapitres III à V sont regroupés les différents résultats expérimentaux, ainsi que les discussions et commentaires sy rapportant. Le chapitre III présente les différents essais réalisés en vue de valider le dispositif de tomographie. Dans ce but, des objets de forme et de taille connues ont été radiographiés. La confrontation des images reconstruites et des objets originaux permet deffectuer cette validation, mais également dapprécier la résolution de la technique tomographique de mesure. Le chapitre IV expose les résultats obtenus sur base des images de sections droites de la colonne sèche. Dans un premier temps, les différentes opérations effectuées sur les images, après leur reconstruction, sont décrites. Ces opérations ont pour but de donner une signification physique réelle aux valeurs des pixels composant les images, mais également daméliorer la représentation graphique de ces dernières. Une des premières grandeurs calculées sur les sections reconstruites est la fraction de vide de lempilage. Les valeurs de porosité ainsi calculées sont comparées à dautres valeurs obtenues expérimentalement, ainsi quaux valeurs annoncées par les fabricants dempilages. Une dimension caractéristique, propre à chacun des types dempilage, est ensuite calculée grâce à lapplication de différentes méthodes comme lanalyse de lentropie de configuration, lanalyse de la distribution de la fraction de solide ou encore lanalyse de la fonction dautocorrélation. La dimension caractéristique ainsi déterminée permet daccéder à la taille des cellules élémentaires susceptibles de représenter la morphologie de la phase solide dans le cadre dune modélisation des phénomènes hydrodynamiques intervenant au sein du lit fixe. Après une brève conclusion récapitulative, la dernière partie du chapitre IV est consacrée à la visualisation des différentes échelles caractéristiques présentes dans les images analysées. Le chapitre V décrit les résultats obtenus sur base des images de sections droites de la colonne irriguée. Dans un premier temps, les images obtenues sur des sections irriguées font lobjet dune analyse purement qualitative. Cette analyse permet dobserver linfluence exercée par le distributeur de liquide sur la distribution du liquide au sein de sections droites situées à différentes hauteurs au sein de la colonne, pour différentes valeurs du débit de liquide. Elle permet également dobserver la corrélation existant entre les distributions des phases liquide et solide au sein de la colonne. Ensuite, les valeurs globales de la rétention de liquide calculées sur base des valeurs des pixels composant les images reconstruites sont confrontées à des valeurs de rétention obtenues par dautres méthodes, expérimentales ou théoriques, afin de valider les résultats obtenus par tomographie. Dans ce but, des comparaisons sont effectuées avec des résultats expérimentaux présentés dans la littérature, avec des valeurs de rétentions mesurées par essais de traceur, ainsi quavec des valeurs calculées grâce à des corrélations proposées dans la littérature et plus particulièrement grâce à la corrélation issue dun modèle découlement en canaux. Un modèle hydrodynamique basé sur une approche probabiliste est ensuite utilisé pour modéliser lhydrodynamique au sein de la colonne à garnissage. Cette approche permet non seulement de rendre compte de lévolution des valeurs globales de la rétention de liquide, mais également de modéliser la distribution des valeurs locales de la vitesse du liquide dans les différentes sections de la colonne à garnissage. Pour terminer, la conclusion résume lensemble des résultats issus de la présente étude, avant de lancer quelques pistes pour des travaux de recherche à venir.
7

The effect of prewetting on the residence time distribution and hydrodynamic parameters in trickle bed reactors

Wales, Nadine Jenifer 04 September 2008 (has links)
Residence time distributions have become an important analytical tool in the analysis of many types of flow systems. Residence time distributions have proven to be effective for analysing trickle bed reactors, as it allows determination of parameters under operating conditions allowing no interference of these conditions. By studying the residence time distribution a great amount of information can be obtained and therefore used to determine a number of hydrodynamic parameters. Due to recent findings that prewetting has a tremendous effect on a number of hydrodynamic parameters such as holdup, wetting efficiency and pressure drop, it is therefore the aim of this study to investigate the effect of trickle flow morphology or prewetting on a trickle bed reactor. The residence time distribution is obtained whereby hydrodynamic parameters are determined and therefore the effect the flow morphology has on various hydrodynamic parameters is highlighted. A number of methods were used to determine these parameters, namely that of the best-fit method, whereby the PDE model was used, and the method of moments. Operating conditions included varying gas and liquid flow rates for porous and non-porous catalyst particles at atmospheric pressure. The different prewetting procedures used during this work included the following: <ul><li>Non-wetted </li> <li>Levec-wetted </li> <li>Super-wetted</li></ul> From this investigation the following conclusions were made: <li>Prewetting has a great effect on the hydrodynamic parameters of trickle bed reactors</li> <li>The differences in prewetting can be attributed to differing flow morphologies for the different prewetted beds i.e. the dominant flow morphology for a non-wetted bed is that of rivulets and for prewetted beds that of film flow</li> <li>It was also found that at low liquid flow rates the flow morphology in prewetted beds changes from film flow to a combination of rivulet and film flow</li> <li>The different flow morphologies for prewetted and non prewetted beds was confirmed by the residence time distributions and various parameters obtained there from</li> <li>At low liquid flow rates the flow morphology becomes a more predominant factor in creating the tailing effect present in residence time distribution for prewetted beds</li> <li>The tailing effect in residence time distributions is a result of both internal diffusion and liquid flow morphology, where the liquid flow morphology is the more dominant factor</li> <li>The use of residence time distributions to determine a number of hydrodynamic parameters proved to be very useful and accurate by means of different methods, i.e. method of moments and best-fit method</li> <li>Differences in the liquid holdup determined from the method of moments and the weighing method confirmed that different flow morphologies exist for different prewetted beds</li> <li>An increase in the dispersion coefficient with prewetting was observed indicating that the amount of micro mixing is different for the different prewetted beds</li> <li>Differences in residence times and high values for the dynamic holdup, for the porous packing, confirmed that the PDE model does not model well the porous packing response curves due to the lack of internal diffusion and internal holdup in this model</li> <li>The dynamic-static mass transfer showed that film flow, as in prewetted beds, results in slower mass transfer as opposed to rivulet flow and therefore it is concluded that prewetting results in different flow morphologies.</li></ul> Following this study it is recommended that a residence time distribution model be used or developed that incorporates the effects of internal diffusion and internal holdup as present in porous catalyst particles. In addition, it was found that very few correlations could accurately predict hydrodynamic parameters due to the absence of the effect of prewetting and therefore it is recommended that correlations be developed that incorporate the effect of prewetting. / Dissertation (MEng)--University of Pretoria, 2008. / Chemical Engineering / unrestricted
8

Experimental and Numerical Investigations for an Advanced Modeling of Two-Phase Flow and Mass Transfer on Column Trays

Vishwakarma, Vineet 07 February 2022 (has links)
Distillation is the leading thermal separation technology that is carried out in many industrial tray columns worldwide. Although distillation columns are expensive in terms of cost and energy, they will remain in service due to unavailability of any equivalent industrially-viable alternative. However, rising energy costs and urgent needs to reduce greenhouse gas emissions demand improvements in the energy efficiency of separation processes, globally. This can be achieved by tuning the dynamics of the evolving two-phase dispersion on column trays via design modification and revamping. Thus, it becomes necessary to understand how the two phases evolve over the tray and how they link to tray efficiency for given tray designs, systems and operating conditions. Only then, the cost and energy reduction can be achieved by strategically iterating the tray design and revamps with respect to the resulting tray efficiency. To pursue this strategy, accurate prediction of the separation efficiency based on flow and mixing patterns on the trays is an important prerequisite. In this thesis, the mathematical models relying on flow and mixing patterns for predicting the tray efficiencies were reviewed. These models were developed based on the analyses of two-phase flow, crossflow hydraulics and mass transfer over the trays. Several limitations in the existing models were identified that could lead to inaccurate tray efficiency predictions. First, the conventional models do not account for any variation in the local two-phase flow in their formulation. These models rather consider a homogeneous flow scenario based on flow monitoring at the tray boundaries only, which indicates a black box efficiency estimation. Second, the existing models do not consider any vapor flow maldistribution, which can be detrimental to the tray efficiency. In response to these limitations, a new model based on refinement of the conventional residence time distribution (RTD) model (referred to as the ‘Refined RRTD model’) was proposed. The new model involves geometric partitioning of the tray into compartments along the flow path length, which permits computing the tray efficiency through quantification of the efficiency of the individual compartments. The proposed model ensures that the fluid dynamics of each compartment contribute towards the overall tray efficiency, which specifically targets the black box prediction of the tray efficiency by the conventional models. The tray discretization further aids in analyzing the impact of vapor flow maldistribution on the tray efficiency. In the initial assessment, the new model capabilities were demonstrated in appropriate case studies after theoretical validation of the model for the limiting cases of the two-phase flows. For the experimental validation of the new model, a full hydrodynamic and mass transfer description of the two-phase dispersion specific to the tray operation is indispensable. Because of the inherently complex dispersion characteristics, significant advancements in the imaging and efficiency modeling methods were required. In this thesis, a DN800 column simulator equipped with two sieve trays (each with 13.55% fractional free area) was used with air and tap water as the working fluids. Deionized water was used as a tracer. The gas loadings in the column in terms of F-factor were 1.77 Pa0.5 and 2.05 Pa0.5, whereas the weir loadings were 2.15 m3m-1h-1, 4.30 m3m-1h-1 and 6.45 m3m-1h-1. An advanced multiplex flow profiler comprising 776 dual-tip conductivity probes for simultaneous conductivity measurements was introduced for hydrodynamic characterization. The spatial resolution of the profiler based on the inter-probe distance was 21 mm × 24 mm, whereas the temporal resolution was 5000 Hz. The design characteristics of the new profiler, electronic scheme, measurement principle, reference framework, and data processing schemes are explained in detail. By analyzing the two-phase dispersion data gathered by the profiler at multiple elevations above the tray, the effective froth height distributions were obtained for the first time based on a newly proposed approach. Uniform froth heights were seen over the majority of the tray deck, whereas both minimum and maximum froth heights were detected immediately after the tray inlet. Based on threshold-based calculation (accompanied by γ-ray CT scans), 3D time-averaged liquid holdup distributions were visualized for the first time, too. Homogeneous liquid holdup distributions were observed at multiple elevations above the deck with the highest holdups occurring near the average effective froth heights. The detailed flow and mixing patterns of the liquid in the two-phase dispersion were retrieved via tracer monitoring. With respect to tray centerline, axisymmetric liquid flow and mixing patterns were detected with parabolic velocity distributions near the tray inlet. The liquid velocities over the remaining tray deck were nearly uniform for the prescribed loadings. Eventually, the RRTD model was applied by discretizing the tray geometrically, and accordingly employing the available hydrodynamic data. The conventional models often applied in the literature were also evaluated with the new model. For evaluating the model predictions, a new system add-on for the existing air-water column facility was proposed for direct efficiency measurements. The air-led stripping of isobutyl acetate from the aqueous solution is a safe and viable approach that overcomes numerous limitations posed by the existing chemical systems. Based on liquid sampling at different tray locations, the liquid concentration distributions were obtained at each operating condition via UV spectroscopy. The tray and point efficiencies as well as stripping factors were calculated from those distributions. Because of the low liquid diffusivity and high liquid backmixing, low efficiencies were observed at the given loadings. The model predictions were consistent with the experimental counterparts (even for the extrapolated values of the involved parameters), because of the uniform liquid flow and mixing in the compartments. For the given predictions, those corresponding to the new RRTD model were the most accurate. Additional hydrodynamic and efficiency data are needed for more conclusive evidence regarding the promise of the RRTD model.

Page generated in 0.4634 seconds