• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Experimental Study of a Liquid Steel Sampling Process

Ericsson, Ola January 2010 (has links)
During the steelmaking process samples are taken from the liquid steel, mainly to assess the chemical composition of the steel. Recently, methods for rapid determination of inclusion characteristics (size and composition) have progressed to the level where they can be implemented in process control. Inclusions in steel can have either good or detrimental effects depending on their characteristics (size, number, composition and morphology). Thereby, by determination of the inclusion characteristics during the steelmaking process it is possible to steer the inclusion characteristics in order to increase the quality of the steel. However, in order to successfully implement these methods it is critical that the samples taken from the liquid steel represent the inclusion characteristics in the liquid steel at the sampling moment.   The purpose of this study is to investigate the changes in inclusion characteristics during the liquid steel sampling process. Experimental studies were carried out at steel plants to measure filling velocity and solidification rate in real industrial samples. The sampling conditions for three sample geometries and two slag protection types were determined. Furthermore, the dispersion of the total oxygen content in the samples was evaluated as a function of sample geometry and type of slag protection. In addition, the effects of cooling rate as well as oxygen and sulfur content on the inclusion characteristics were investigated in laboratory and industrial samples. Possibilities to separate primary (existing in the liquid steel at sampling moment) and secondary (formed during cooling and solidification) inclusions depending on size and composition were investigated. Finally, in order to evaluate the homogeneity and representative of the industrial samples the dispersion of inclusion characteristics in different zones and layers of the samples were investigated.   It was concluded that the type of slag protection has a significant effect on the filling velocity and the sampling repeatability. Furthermore, that the thickness of the samples is the main controlling factor for the solidification rate. It was shown that top slag can contaminate the samples. Therefore, the choice of slag protection type is critical to obtain representative samples. It was shown that the cooling rate has a significant effect on the number of secondary precipitated inclusions. However, the number of primary inclusions was almost constant and independent on the cooling rate. In most cases it is possible to roughly separate the secondary and primary oxide inclusions based on the particle size distributions. However, in high-sulfur steels a significant amount of sulfides precipitate heterogeneously during cooling and solidification. This makes separation of secondary and primary inclusions very difficult. Moreover, the secondary sulfides which precipitate heterogeneously significantly change the characteristics (size, composition and morphology) of primary inclusions. The study revealed that both secondary and primary inclusions are heterogeneously dispersed in the industrial samples. In general, the middle zone of the surface layer is recommended for investigation of primary inclusions. / QC 20101112
2

Evolution of inclusion population in calcium treated ultra-high strength steels:novel applications of sample data treatment

Alatarvas, T. (Tuomas) 20 November 2018 (has links)
Abstract Non-metallic inclusions are unavoidable particles in steel and are often detrimental to the steelmaking process and the mechanical properties of the steel. While it is not feasible to remove all inclusions, in the well-established calcium treatment of aluminium-killed steel, solid aluminium oxides are transformed into less harmful liquid calcium aluminates. The main objective of this work was to develop a new inclusion identification and classification method. The presented method offers valuable information on phases of the inclusions. This data is often buried within simple inclusion classification criteria. The method offers the best approximation of the phases in each inclusion detected with minimal time, if no time-consuming elemental map analyses are available. In this work, applications for the inclusion phase identification method are presented. Utilising the method, the dispersion and evolution of inclusions during the sampling of liquid steel in lollipop samples is investigated, as well as the evolution of inclusions during continuous casting. New information is obtained on the elongation of inclusions and formation of oxide–sulphide stringers during hot rolling. The results for the investigated steels show that with sulphur contents higher than 10 ppm, calcium aluminates were back-modified to alumina and spinel inclusions during casting. However, with decreasing sulphur contents, and adequate simultaneous calcium treatment of oxides, Al₂O₃ and spinel formation is hindered or even avoided. The most elongated inclusions are often also found in stringers. According to the results of this study, low melting calcium aluminate inclusions are not the most elongated oxide inclusions in the hot rolled product. With moderate calcium treatment, an optimal oxide composition can be obtained, found within the C12A7–CA–MgO composition. These liquid inclusions ensure good castability, while they do not easily elongate or fragment into detrimental stringers after continuous casting. / Tiivistelmä Epämetalliset sulkeumat ovat väistämättä osa terästä, ja ne aiheuttavat ongelmia prosessille ja teräksen mekaanisille ominaisuuksille. Sulkeumien poiston sijaan niiden koostumusta muokataan kalsiumkäsittelyllä. Tällöin kiinteät alumiinioksidit muuttuvat vähemmän ongelmallisiksi suliksi kalsiumaluminaateiksi. Tämän työn päätavoitteena oli kehittää uusi sulkeumien tunnistus- ja luokittelumenetelmä. Sulkeuma-analyysien data voi jäädä hyödyntämättä, jos luokitteluun käytetään yksinkertaisia kriteerejä. Työssä esitetty menetelmä antaa parhaan arvion sulkeumissa olevista faaseista, mikäli sulkeumista ei ole alkuainekarttoja, joiden muodostaminen vie huomattavasti aikaa. Väitöskirjassa esitetään sulkeumien tunnistus- ja luokittelumenetelmän soveltamiskohteita. Menetelmän avulla tutkitaan sulkeumien muutosta ja jakaantumista sulan teräksen näytteenotossa ja sulkeumakuvan muutosta jatkuvavalun aikana. Uutta tietoa esitetään oksidi-sulfidiketjujen muodostumisesta kuumavalssauksen aikana. Tutkituilla teräksillä rikkipitoisuuden noustessa yli 10 ppm:n sulat kalsiumaluminaatit takaisinmuokkautuvat kiinteiksi alumiinioksideiksi tai spinelleiksi jatkuvavalun aikana. Riittävän matalalla rikkipitoisuudella ja kohtuullisella kalsiumkäsittelyllä alumiinioksidien ja spinellien muodostumista voidaan hillitä tai jopa estää se. Tutkimuksessa esitetään, että kuumavalssauksessa venyvimmät sulkeumat muodostavat myös lukuisten sulkeumien oksidi-sulfidiketjuja, jotka ovat tuotteen ominaisuuksien kannalta haitallisia. Tulosten mukaan kalsiumaluminaatit, jotka sulavat matalimmissa lämpötiloissa, eivät kuitenkaan ole taipuvaisimpia venymään valssauksessa. Maltillisella kalsiumkäsittelyllä saavutetaan optimaalinen oksidikoostumus C12A7–CA–MgO-faasiseurueesta. Nämä sulkeumat ovat sulia jatkuvavalussa varmistaen teräksen valettavuuden. Toisaalta ne eivät helposti veny tai rikkoonnu ketjuiksi valssauksessa jatkuvavalun jälkeen.
3

An Experimental Study of Liquid Steel Sampling

Ericsson, Ola January 2009 (has links)
<p>Sampling of liquid steel to control the steel making process is very important in the steel industry. However, there are numerous types of disposable samplers and no united standard for sampling. The goal in this study is to investigate the effect of slag protection type and sample geometry on sampling parameters and sample homogeneity. Three sample geometries were selected: i) Björneborg ii) Lollipop with a 6 mm thickness and iii) Lollipop with a 12 mm thickness. These sample geometries have been tested with two types of slag protection: metal-cap-protection and argon-protection. The filling velocity and solidification rate of steel samples have been experimentally measured during plant trials. The sample homogeneity with respect to total oxygen content and inclusion size distribution has been determined in different parts of the samples. The study shows that argon-protected samplers have lower, more even, filling velocities (0.19±0.09 m/s) compared to metal-cap-protected samplers (1.28±2.23 m/s). The solidification rate measurements of the different samplers show that the 6 mm thick Lollipop has the highest solidification rate (99~105 °C/s).  Measurements of total oxygen content in argon-protected samples showed little variation between different zones of the samples. However, metal-cap-protected samples contained much higher total oxygen contents. Light optical microscope studies showed that the increase in total oxygen content was probably caused by entrapment of top slag during sampling. Furthermore, it was found that the contamination of top slag in the metal samples increased with a decreased sample weight. Determination of inclusion size distribution in argon-protected Lollipop samples showed that a larger number of primary inclusions are found in the top part compared to the middle and the bottom part of the samples.</p><p> </p>
4

An Experimental Study of Liquid Steel Sampling

Ericsson, Ola January 2009 (has links)
Sampling of liquid steel to control the steel making process is very important in the steel industry. However, there are numerous types of disposable samplers and no united standard for sampling. The goal in this study is to investigate the effect of slag protection type and sample geometry on sampling parameters and sample homogeneity. Three sample geometries were selected: i) Björneborg ii) Lollipop with a 6 mm thickness and iii) Lollipop with a 12 mm thickness. These sample geometries have been tested with two types of slag protection: metal-cap-protection and argon-protection. The filling velocity and solidification rate of steel samples have been experimentally measured during plant trials. The sample homogeneity with respect to total oxygen content and inclusion size distribution has been determined in different parts of the samples. The study shows that argon-protected samplers have lower, more even, filling velocities (0.19±0.09 m/s) compared to metal-cap-protected samplers (1.28±2.23 m/s). The solidification rate measurements of the different samplers show that the 6 mm thick Lollipop has the highest solidification rate (99~105 °C/s).  Measurements of total oxygen content in argon-protected samples showed little variation between different zones of the samples. However, metal-cap-protected samples contained much higher total oxygen contents. Light optical microscope studies showed that the increase in total oxygen content was probably caused by entrapment of top slag during sampling. Furthermore, it was found that the contamination of top slag in the metal samples increased with a decreased sample weight. Determination of inclusion size distribution in argon-protected Lollipop samples showed that a larger number of primary inclusions are found in the top part compared to the middle and the bottom part of the samples.

Page generated in 0.1115 seconds