• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Experimental Study of a Liquid Steel Sampling Process

Ericsson, Ola January 2010 (has links)
During the steelmaking process samples are taken from the liquid steel, mainly to assess the chemical composition of the steel. Recently, methods for rapid determination of inclusion characteristics (size and composition) have progressed to the level where they can be implemented in process control. Inclusions in steel can have either good or detrimental effects depending on their characteristics (size, number, composition and morphology). Thereby, by determination of the inclusion characteristics during the steelmaking process it is possible to steer the inclusion characteristics in order to increase the quality of the steel. However, in order to successfully implement these methods it is critical that the samples taken from the liquid steel represent the inclusion characteristics in the liquid steel at the sampling moment.   The purpose of this study is to investigate the changes in inclusion characteristics during the liquid steel sampling process. Experimental studies were carried out at steel plants to measure filling velocity and solidification rate in real industrial samples. The sampling conditions for three sample geometries and two slag protection types were determined. Furthermore, the dispersion of the total oxygen content in the samples was evaluated as a function of sample geometry and type of slag protection. In addition, the effects of cooling rate as well as oxygen and sulfur content on the inclusion characteristics were investigated in laboratory and industrial samples. Possibilities to separate primary (existing in the liquid steel at sampling moment) and secondary (formed during cooling and solidification) inclusions depending on size and composition were investigated. Finally, in order to evaluate the homogeneity and representative of the industrial samples the dispersion of inclusion characteristics in different zones and layers of the samples were investigated.   It was concluded that the type of slag protection has a significant effect on the filling velocity and the sampling repeatability. Furthermore, that the thickness of the samples is the main controlling factor for the solidification rate. It was shown that top slag can contaminate the samples. Therefore, the choice of slag protection type is critical to obtain representative samples. It was shown that the cooling rate has a significant effect on the number of secondary precipitated inclusions. However, the number of primary inclusions was almost constant and independent on the cooling rate. In most cases it is possible to roughly separate the secondary and primary oxide inclusions based on the particle size distributions. However, in high-sulfur steels a significant amount of sulfides precipitate heterogeneously during cooling and solidification. This makes separation of secondary and primary inclusions very difficult. Moreover, the secondary sulfides which precipitate heterogeneously significantly change the characteristics (size, composition and morphology) of primary inclusions. The study revealed that both secondary and primary inclusions are heterogeneously dispersed in the industrial samples. In general, the middle zone of the surface layer is recommended for investigation of primary inclusions. / QC 20101112
2

An Experimental Study of Liquid Steel Sampling

Ericsson, Ola January 2009 (has links)
<p>Sampling of liquid steel to control the steel making process is very important in the steel industry. However, there are numerous types of disposable samplers and no united standard for sampling. The goal in this study is to investigate the effect of slag protection type and sample geometry on sampling parameters and sample homogeneity. Three sample geometries were selected: i) Björneborg ii) Lollipop with a 6 mm thickness and iii) Lollipop with a 12 mm thickness. These sample geometries have been tested with two types of slag protection: metal-cap-protection and argon-protection. The filling velocity and solidification rate of steel samples have been experimentally measured during plant trials. The sample homogeneity with respect to total oxygen content and inclusion size distribution has been determined in different parts of the samples. The study shows that argon-protected samplers have lower, more even, filling velocities (0.19±0.09 m/s) compared to metal-cap-protected samplers (1.28±2.23 m/s). The solidification rate measurements of the different samplers show that the 6 mm thick Lollipop has the highest solidification rate (99~105 °C/s).  Measurements of total oxygen content in argon-protected samples showed little variation between different zones of the samples. However, metal-cap-protected samples contained much higher total oxygen contents. Light optical microscope studies showed that the increase in total oxygen content was probably caused by entrapment of top slag during sampling. Furthermore, it was found that the contamination of top slag in the metal samples increased with a decreased sample weight. Determination of inclusion size distribution in argon-protected Lollipop samples showed that a larger number of primary inclusions are found in the top part compared to the middle and the bottom part of the samples.</p><p> </p>
3

An Experimental Study of Liquid Steel Sampling

Ericsson, Ola January 2009 (has links)
Sampling of liquid steel to control the steel making process is very important in the steel industry. However, there are numerous types of disposable samplers and no united standard for sampling. The goal in this study is to investigate the effect of slag protection type and sample geometry on sampling parameters and sample homogeneity. Three sample geometries were selected: i) Björneborg ii) Lollipop with a 6 mm thickness and iii) Lollipop with a 12 mm thickness. These sample geometries have been tested with two types of slag protection: metal-cap-protection and argon-protection. The filling velocity and solidification rate of steel samples have been experimentally measured during plant trials. The sample homogeneity with respect to total oxygen content and inclusion size distribution has been determined in different parts of the samples. The study shows that argon-protected samplers have lower, more even, filling velocities (0.19±0.09 m/s) compared to metal-cap-protected samplers (1.28±2.23 m/s). The solidification rate measurements of the different samplers show that the 6 mm thick Lollipop has the highest solidification rate (99~105 °C/s).  Measurements of total oxygen content in argon-protected samples showed little variation between different zones of the samples. However, metal-cap-protected samples contained much higher total oxygen contents. Light optical microscope studies showed that the increase in total oxygen content was probably caused by entrapment of top slag during sampling. Furthermore, it was found that the contamination of top slag in the metal samples increased with a decreased sample weight. Determination of inclusion size distribution in argon-protected Lollipop samples showed that a larger number of primary inclusions are found in the top part compared to the middle and the bottom part of the samples.

Page generated in 0.0572 seconds