• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computer Simulations of Simple Liquids with Tetrahedral Local Order : the Supercooled Liquid, Solids and Phase Transitions

Elenius, Måns January 2009 (has links)
The understanding of complex condensed matter systems is an area of intense study. In this thesis, some properties of simple liquids with strong preference for tetrahedral local ordering are explored. These liquids are amenable to supercooling, and give complex crystalline structures on eventual crystallisation. All liquids studied are simple, monatomic and are similar to real metallic liquids. The vibrational density of states of a glass created in simulation is calculated. We show a correspondence between the vibrational properties of the crystal and the glass, indicating that the vibrational spectra of crystals can be used to understand the more complex vibrational spectra of the glass of the same substance. The dynamics of supercooled liquids is investigated using a previously not implemented comprehensive measure of structural relaxation. This new measure decays more slowly in the deeply supercooled domain than the commonly used measure. A new atomic model for octagonal quasicrystals is presented. The model is based on findings from a molecular dynamics simulation that resulted in 45˚ twinned β-Mn. A decoration is derived from the β-Mn unit cell and the unit cell of the intermediate structure found at the twinning interface. Extensive simulations are used to explore the phase diagram of a liquid at low densities. The resulting phase diagram shows a spinodal line and a phase coexistence region between a liquid and a crystalline phase ending in a critical point. This contradicts the old conclusion of the Landau theory -- that continuous transitions between liquids and crystals cannot exist The same liquid is explored at higher densities. Upon cooling the liquid performs a first order liquid-liquid phase transition. The low temperature liquid is shown to be strong and to have very good glass forming abilities. This result offers new insights into fragile to strong transitions and suggests the possibility of a good metallic glass former. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 3: In progress.
2

High temperature supercapacitors

Black, Victoria J. January 2013 (has links)
The scientific objective of this research program was to determine the feasibility of manufacturing an ionic liquid-based supercapacitor that could operate at temperatures up to 220 °C. A secondary objective was to determine the compatibility of ionic liquids with other cell components (e.g. current collectors) at high temperature and, if required, consider means of mitigating any problems. The industrial motivation for the present work was to develop a supercapacitor capable of working in the harsh environment of deep offshore boreholes. If successful, this technology would allow down-hole telemetry under conditions of mechanical vibration and high temperature. The obstacles, however, were many. All supercapacitor components had to be stable against thermal decomposition up to T ≥ 220 °C. Volatile components had to be eliminated. If possible, the finished device should be able to withstand voltages greater than 4 V, in order to maximise the amount of stored energy. The internal resistance should be as low as possible. Side reactions, particularly faradaic reactions, should be eliminated or suppressed. All liquid components should be gelled to minimise leakage in the event of cell damage. Finally, any emergent problems should be identified.

Page generated in 0.1282 seconds