Spelling suggestions: "subject:"iiquid physics"" "subject:"1iquid physics""
1 |
Computer Simulations of Simple Liquids with Tetrahedral Local Order : the Supercooled Liquid, Solids and Phase TransitionsElenius, Måns January 2009 (has links)
The understanding of complex condensed matter systems is an area of intense study. In this thesis, some properties of simple liquids with strong preference for tetrahedral local ordering are explored. These liquids are amenable to supercooling, and give complex crystalline structures on eventual crystallisation. All liquids studied are simple, monatomic and are similar to real metallic liquids. The vibrational density of states of a glass created in simulation is calculated. We show a correspondence between the vibrational properties of the crystal and the glass, indicating that the vibrational spectra of crystals can be used to understand the more complex vibrational spectra of the glass of the same substance. The dynamics of supercooled liquids is investigated using a previously not implemented comprehensive measure of structural relaxation. This new measure decays more slowly in the deeply supercooled domain than the commonly used measure. A new atomic model for octagonal quasicrystals is presented. The model is based on findings from a molecular dynamics simulation that resulted in 45˚ twinned β-Mn. A decoration is derived from the β-Mn unit cell and the unit cell of the intermediate structure found at the twinning interface. Extensive simulations are used to explore the phase diagram of a liquid at low densities. The resulting phase diagram shows a spinodal line and a phase coexistence region between a liquid and a crystalline phase ending in a critical point. This contradicts the old conclusion of the Landau theory -- that continuous transitions between liquids and crystals cannot exist The same liquid is explored at higher densities. Upon cooling the liquid performs a first order liquid-liquid phase transition. The low temperature liquid is shown to be strong and to have very good glass forming abilities. This result offers new insights into fragile to strong transitions and suggests the possibility of a good metallic glass former. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 3: In progress.
|
2 |
Solvent–Solute Interaction : Studied by Synchrotron Radiation Based Photo and Auger Electron SpectroscopiesPokapanich, Wandared January 2011 (has links)
Aqueous solutions were studied using photoelectron and Auger spectroscopy, based on synchrotron radiation and a liquid micro-jet setup. By varying the photon energy in photoelectron spectra, we depth profiled an aqueous tetrabutylammonium iodide (TBAI) solution. Assuming uniform angular emission from the core levels, we found that the TBA+ ions were oriented at the surface with the hydrophobic butyl arms sticking into the liquid. We investigated the association between ions and their neighbors in aqueous solutions by studying the electronic decay after core ionization. The (2p)−1 decay of solvated K+ and Ca2+ ions was studied. The main features in the investigated decay spectra corresponded to two-hole final states localized on the ions. The spectra also showed additional features, related to delocalized two-hole final states with vacancies on a cation and a neighboring water molecule. These two processes compete, and by comparing relative intensities and using the known rate for the localized decay, we determined the time-scale for the delocalized process for the two ions. We compared to delocalized electronic decay processes in Na+, Mg2+, and Al3+, and found that they were slower in K+ and Ca2+, due to different internal decay mechanisms of the ions, as well as external differences in the ion-solute distances and interactions. In the O 1s Auger spectra of aqueous metal halide solutions, we observed features related to delocalized two-hole final states with vacancies on a water molecule and a neighboring solvated anion. The relative intensity of these feature indicated that the strength of the interaction between the halide ions and water correlated with ionic size. The delocalized decay was also used to investigate contact ion pair formation in high concentrated potassium halide solutions, but no concrete evidence of contact ion pairs was observed. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 726
|
Page generated in 0.0531 seconds