• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aqueous Solutions as seen through an Electron Spectrometer : Surface Structure, Hydration Motifs and Ultrafast Charge Delocalization Dynamics

Ottosson, Niklas January 2011 (has links)
In spite of their high abundance and importance, aqueous systems are enigmatic on the microscopic scale. In order to obtain information about their geometrical and electronic structure, simple aqueous solutions have been studied experimentally by photo- and Auger electron spectroscopy using the novel liquid micro-jet technique in conjunction with synchrotron radiation. The thesis is thematically divided into three parts. In the first part we utilize the surface sensitivity of photoelectron spectroscopy to probe the distributions of solutes near the water surface. In agreement with recent theoretical predictions we find that large polarizable anions, such as I- and ClO4-, display enhanced surface propensities compared to smaller rigid ions. Surface effects arising from ion-ion interactions at higher electrolyte concentrations and as function of pH are investigated. Studies of linear mono-carboxylic acids and benzoic acid show that the neutral molecular forms of such weak acids are better stabilized at the water surface than their respective conjugate base forms. The second part examines what type of information core-electron spectra can yield about the chemical state and hydration structure of small organic molecules in water. We demonstrate that the method is sensitive to the protonation state of titratable functional groups and that core-level lineshapes are dependent on local water hydration configurations. Using a combination of photoelectron and X-ray absorption spectroscopy we also show that the electronic re-arrangement upon hydrolysis of aldehydes yields characteristic fingerprints in core-level spectra. In the last part of this thesis we study ultrafast charge delocalization dynamics in aqueous solutions using resonant and off-resonant Auger spectroscopy. Intermolecular Coulombic decay (ICD) is found to occur in a number of core-excited solutions where excess energy is transferred between the solvent and the solute. The rate of ultrafast electron delocalization between hydrogen bonded water molecules upon oxygen 1s resonant core-excitation is found to decrease upon solvation of inorganic ions. The presented work is illustrative of how core-level photoelectron spectroscopy can be valuable in the study of fundamental phenomena in aqueous solutions.
2

A Treatise on the Geometric and Electronic Structure of Clusters : Investigated by Synchrotron Radiation Based Electron Spectroscopies

Lindblad, Andreas January 2008 (has links)
<p>Clusters are finite ensembles of atoms or molecules with sizes in the nanometer regime (<i>i.e.</i> nanoparticles). This thesis present results on the geometric and electronic structure of homogeneous and heterogeneous combinations of atoms and molecules. The systems have been studied with synchrotron radiation and valence, core and Auger electron spectroscopic techniques.</p><p>The first theme of the thesis is that of mixed clusters. It is shown that by varying the cluster production technique both structures that are close to that predicted by equilibrium considerations can be attained as well as far from equilibrium structures.</p><p>Electronic processes following ionization constitute the second theme. The post-collision interaction phenomenon, energy exchange between the photo- and the Auger electrons, is shown to be different in clusters of argon, krypton and xenon. A model is proposed that takes polarization screening in the final state into account. This result is of general character and should be applicable to the analysis of core level photoelectron and Auger electron spectra of insulating and semi-conducting bulk materials as well.</p><p>Interatomic Coloumbic Decay is a process that can occur in the condensed phases of weakly bonded systems. Results on the time-scale of the process in Ne clusters and mixed Ar/Ne clusters are herein discussed, as well observations of resonant contributions to the process. In analogy to Auger <i>vis-à-vis</i> Resonant Auger it is found that to the ICD process there is a corresponding Resonant ICD process possible. This has later been observed in other systems and by theoretical calculations as well in subsequent works by other groups.</p><p>Delocalization of dicationic valence final states in the hydrogen bonded ammonia clusters and aqueous ammonia has also been investigated by Auger electron spectroscopy. With those results it was possible to assign a previously observed feature in the Auger electron spectrum of solid ammonia.</p>
3

A Treatise on the Geometric and Electronic Structure of Clusters : Investigated by Synchrotron Radiation Based Electron Spectroscopies

Lindblad, Andreas January 2008 (has links)
Clusters are finite ensembles of atoms or molecules with sizes in the nanometer regime (i.e. nanoparticles). This thesis present results on the geometric and electronic structure of homogeneous and heterogeneous combinations of atoms and molecules. The systems have been studied with synchrotron radiation and valence, core and Auger electron spectroscopic techniques. The first theme of the thesis is that of mixed clusters. It is shown that by varying the cluster production technique both structures that are close to that predicted by equilibrium considerations can be attained as well as far from equilibrium structures. Electronic processes following ionization constitute the second theme. The post-collision interaction phenomenon, energy exchange between the photo- and the Auger electrons, is shown to be different in clusters of argon, krypton and xenon. A model is proposed that takes polarization screening in the final state into account. This result is of general character and should be applicable to the analysis of core level photoelectron and Auger electron spectra of insulating and semi-conducting bulk materials as well. Interatomic Coloumbic Decay is a process that can occur in the condensed phases of weakly bonded systems. Results on the time-scale of the process in Ne clusters and mixed Ar/Ne clusters are herein discussed, as well observations of resonant contributions to the process. In analogy to Auger vis-à-vis Resonant Auger it is found that to the ICD process there is a corresponding Resonant ICD process possible. This has later been observed in other systems and by theoretical calculations as well in subsequent works by other groups. Delocalization of dicationic valence final states in the hydrogen bonded ammonia clusters and aqueous ammonia has also been investigated by Auger electron spectroscopy. With those results it was possible to assign a previously observed feature in the Auger electron spectrum of solid ammonia.
4

Solvent–Solute Interaction : Studied by Synchrotron Radiation Based Photo and Auger Electron Spectroscopies

Pokapanich, Wandared January 2011 (has links)
Aqueous solutions were studied using photoelectron and Auger spectroscopy, based on synchrotron radiation and a liquid micro-jet setup. By varying the photon energy in photoelectron spectra, we depth profiled an aqueous tetrabutylammonium iodide (TBAI) solution. Assuming uniform angular emission from the core levels, we found that the TBA+ ions were oriented at the surface with the hydrophobic butyl arms sticking into the liquid. We investigated the association between ions and their neighbors in aqueous solutions by studying the electronic decay after core ionization. The (2p)−1 decay of solvated K+ and Ca2+ ions was studied. The main features in the investigated decay spectra corresponded to two-hole final states localized on the ions. The spectra also showed additional features, related to delocalized two-hole final states with vacancies on a cation and a neighboring water molecule. These two processes compete, and by comparing relative intensities and using the known rate for the localized decay, we determined the time-scale for the delocalized process for the two ions. We compared to delocalized electronic decay processes in Na+, Mg2+, and Al3+, and found that they were slower in K+ and Ca2+, due to different internal decay mechanisms of the ions, as well as external differences in the ion-solute distances and interactions. In the O 1s Auger spectra of aqueous metal halide solutions, we observed features related to delocalized two-hole final states with vacancies on a water molecule and a neighboring solvated anion. The relative intensity of these feature indicated that the strength of the interaction between the halide ions and water correlated with ionic size. The delocalized decay was also used to investigate contact ion pair formation in high concentrated potassium halide solutions, but no concrete evidence of contact ion pairs was observed. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 726

Page generated in 0.2469 seconds