• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Torus Does Not Have a Hyperbolic Structure

Butler, Joe R. 08 1900 (has links)
Several basic topics from Algebraic Topology, including fundamental group and universal covering space are shown. The hyperbolic plane is defined, including its metric and show what the "straight" lines are in the plane and what the isometries are on the plane. A hyperbolic surface is defined, and shows that the two hole torus is a hyperbolic surface, the hyperbolic plane is a universal cover for any hyperbolic surface, and the quotient space of the universal cover of a surface to the group of automorphisms on the covering space is equivalent to the original surface.
2

Implementation of a Conrad Probe on a Boundary Layer Measurement System

Ulk, Charles Rocky 01 August 2010 (has links)
This thesis presents the design, calibration, and performance evaluation of a type of two-hole pressure probe anemometer known as a Conrad probe, as well as its subsequent implementation on an autonomous, compact boundary layer measurement device and its first application for subsonic in-flight measurements of a swept wing boundary layer. Calibration of the Conrad probe was accomplished using two calibration functions and a non-nulling method for resolving in-plane flow velocity direction and magnitude over a range of ±30 degrees. This approach to calibration and application offered the advantages of rapid data acquisition with lower energy consumption than alternative methods for pressure probe anemometry in swept wing boundary layers. Following calibration, the probe was adapted for use on an autonomous boundary layer measurement device including development of revised software. Utilizing this setup, boundary layer measurements were obtained on both swept and unswept models in a wind tunnel with a maximum operational velocity of 110 mph corresponding to a dynamic pressure of 30 psf. The wind tunnel results showed that the Conrad probe could measure in-plane flow magnitude for both laminar and turbulent boundary layers with sufficient uncertainty and spatial resolution for its intended application in flight testing. The Conrad probe and boundary layer measurement system were then employed for flight tests of a 30 degree swept wing model carried beneath an aircraft at a flight Mach number of 0.52 and altitudes up to 44,000 ft. The flight test results from the Conrad probe allowed for the successful determination of overall boundary layer thickness, laminar/turbulent conditions, and degree of flow turning within the boundary layer. It is believed that the rapid data acquisition and low energy consumption of the Conrad probe implementation on the boundary layer measurement system make it a good alternative for future flight testing requiring measurements of in-plane flow velocity magnitude and direction.
3

Solvent–Solute Interaction : Studied by Synchrotron Radiation Based Photo and Auger Electron Spectroscopies

Pokapanich, Wandared January 2011 (has links)
Aqueous solutions were studied using photoelectron and Auger spectroscopy, based on synchrotron radiation and a liquid micro-jet setup. By varying the photon energy in photoelectron spectra, we depth profiled an aqueous tetrabutylammonium iodide (TBAI) solution. Assuming uniform angular emission from the core levels, we found that the TBA+ ions were oriented at the surface with the hydrophobic butyl arms sticking into the liquid. We investigated the association between ions and their neighbors in aqueous solutions by studying the electronic decay after core ionization. The (2p)−1 decay of solvated K+ and Ca2+ ions was studied. The main features in the investigated decay spectra corresponded to two-hole final states localized on the ions. The spectra also showed additional features, related to delocalized two-hole final states with vacancies on a cation and a neighboring water molecule. These two processes compete, and by comparing relative intensities and using the known rate for the localized decay, we determined the time-scale for the delocalized process for the two ions. We compared to delocalized electronic decay processes in Na+, Mg2+, and Al3+, and found that they were slower in K+ and Ca2+, due to different internal decay mechanisms of the ions, as well as external differences in the ion-solute distances and interactions. In the O 1s Auger spectra of aqueous metal halide solutions, we observed features related to delocalized two-hole final states with vacancies on a water molecule and a neighboring solvated anion. The relative intensity of these feature indicated that the strength of the interaction between the halide ions and water correlated with ionic size. The delocalized decay was also used to investigate contact ion pair formation in high concentrated potassium halide solutions, but no concrete evidence of contact ion pairs was observed. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 726

Page generated in 0.0933 seconds