• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 295
  • 122
  • 46
  • 45
  • 24
  • 23
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • Tagged with
  • 725
  • 155
  • 96
  • 91
  • 84
  • 76
  • 76
  • 69
  • 62
  • 60
  • 60
  • 55
  • 54
  • 53
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The effect of different road load implementation strategies on fuel economy of USPS step vans

Zia, Seiar Ahmad. January 2009 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xii, 92 p. : ill. (some col.), col. map. Includes abstract. Includes bibliographical references (p. 79-81).
12

Lateral torsional buckling of rectangular reinforced concrete beams

Kalkan, Ilker. January 2009 (has links)
Thesis (Ph.D)--Civil and Environmental Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Zureick Abdul-Hamid; Committee Member: Ellingwood, Bruce R.; Committee Member: Kahn, Lawrence F.; Committee Member: Kardomateas, George A.; Committee Member: Will, Kenneth M. Part of the SMARTech Electronic Thesis and Dissertation Collection.
13

Neutron diffraction study of load response and residual stresses in WC-(Ni/Co) composites

Paggett, Jon W., January 2005 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2005. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (May 25, 2006) Vita. Includes bibliographical references.
14

Evaluation of Wind Loads on Solar Panels

Barata, Johann 02 December 2011 (has links)
The current impetus for alternative energy sources is increasing the demand for solar energy technologies in Florida – the Sunshine State. Florida’s energy production from solar, thermal or photovoltaic sources accounts for only 0.005% of the state total energy generation. The existing types of technologies, methods of installation, and mounting locations for solar panels vary significantly, and are consequently affected by wind loads in different ways. The fact that Florida is frequently under hurricane risk and the lack of information related with design wind loads on solar panels result in a limited use of solar panels for generating energy in the “Sunshine State” Florida. By using Boundary Layer Wind Tunnel testing techniques, the present study evaluates the effects of wind on solar panels, and provides explicit and reliable information on design wind loads in the form of pressure coefficient value. The study considered two different types of solar panel arrangements, (1) isolated solar panel and (2) arrays, and two different mounting locations, (1) ground mounted and (2) roof mounted. Detailed wind load information was produced as part of this study for isolated and arrayed solar panels. Two main conclusions from this study are the following:(1) for isolated solar panel with high slopes the wind load for wind angle of attack (AoA) perpendicular to the main axis exhibited the largest wind loads; (2) for arrays, while the outer rows and column were subjected to high wind loads for AoA perpendicular to the main axis, the interior solar panels were subjected to higher loads for oblique AoA.
15

Snow mechanics : mechanical properties, energy analysis

Metaxas, Ioannis J. January 1984 (has links)
No description available.
16

Geomechanical behaviour of biaxially loaded rock

Yun, Xiaoyou, 1965- January 2008 (has links)
No description available.
17

Utility of Quasi-Static Gust Loads Certification Methods for Novel Configurations

Ricciardi, Anthony Pasquale 17 November 2011 (has links)
Aeroelastic gust and maneuver loads have driven the sizing of primary aircraft structures since the beginning of aviation. Methodologies for determining the gust loads on aircraft have evolved over the last 100 years. There are three general approaches to gust loads analysis: quasi-static, transient, and continuous methods. Quasi-static analysis offers the greatest computational efficiency. A quasi-static formulation referred to as Pratt's Method is the current practice for FAR Part 23 certification requirements. Assumptions made in the derivation of Pratt's Method are acceptable for many conventional aircraft, but additional fidelity from transient and continuous analysis are required to certify FAR Part 25 aircraft. This work provides an assessment of the usability of Pratt's Method for unconventional high altitude long endurance (HALE) aircraft. Derivation Pratt's Method is reviewed and all assumptions are identified. Error of a key curve fit equation is quantified directly. Application dependent errors are quantified by comparing loads calculated using Pratt's Method to loads calculated from transient analysis. To facilitate this effort, a state of the art nonlinear aeroelastic code has been modified to more accurately capture the transient gust response. Application dependent errors are presented in the context of a SensorCraft inspired joined-wing HALE model, and a Helios inspired flying wing HALE model. Recommendations are made on the usability of Pratt's Method for aircraft similar to the two HALE models. It is concluded that Pratt's Method is useful for preliminary design of the joined-wing HALE model, but inadequate for the analysis of the flying wing model. Additional recommendations are made corresponding to subtleties in the implementation of Pratt's Method for unconventional configurations. / Master of Science
18

The Behaviour of Plank (Tongue and Groove) Wood Decking Under the Effects of Uniformly Distributed and Concentrated Loads

Rocchi, Kevin 24 September 2013 (has links)
Plank (tongue and groove) wood decking is a product that is commonly used in post and beam timber construction to transfer gravity loads on roofs and floors. In 2010, The National Building Code of Canada changed the application area of the specified concentrated roof live loads from 750 mm x 750 mm to 200 mm x 200 mm. The change was made to better reflect the area which a construction worker with equipment occupies. Preliminary analysis showed that the change in the application area of concentrated loads may have a significant impact on the design of decking systems. Little research or development has been done on plank decking since the 1950’s and 1960’s. An experimental program was undertaken at the University of Ottawa’s structural laboratory to better understand the behaviour of plank decking under uniformly distributed and concentrated loads. Non-destructive and destructive tests were conducted on plank decking systems to investigate their stiffness and failure mode characteristics under uniformly distributed as well as concentrated loads. The experimental test program was complimented with a detailed finite element model in order to predict the behaviour of a plank decking system, especially the force transfer between decks through the tongue and groove joint. The study showed that the published deflection coefficients for uniformly distributed loads can accurately predict the three types of decking layup patterns specified in the Canadian Design Standard (CSA O86, 2009). For unbalanced uniformly distributed loads on two-span continuous layup, it was found that the deflection coefficient of 0.42 was non-conservative. It was also found that under concentrated loads, the stiffness of the decking system increased significantly as more boards were added. A deflection coefficient of 0.40 is appropriate to calculate the deflection for the three types of decking layup patterns specified in the Canadian Design Standard (CSA O86, 2009) under concentrated load on an area of 200 mm by 200 mm. Significant load sharing was observed for plank decking under concentrated loads. An increase in capacity of about 1.5 to 2.5 times the capacity of the loaded boards was found. Furthermore, it was found that placing sheathing on top of a decking system had a significant effect in the case of concentrated load with an increase of over 50% in stiffness and over 100% in ultimate capacity.
19

The Behaviour of Plank (Tongue and Groove) Wood Decking Under the Effects of Uniformly Distributed and Concentrated Loads

Rocchi, Kevin January 2013 (has links)
Plank (tongue and groove) wood decking is a product that is commonly used in post and beam timber construction to transfer gravity loads on roofs and floors. In 2010, The National Building Code of Canada changed the application area of the specified concentrated roof live loads from 750 mm x 750 mm to 200 mm x 200 mm. The change was made to better reflect the area which a construction worker with equipment occupies. Preliminary analysis showed that the change in the application area of concentrated loads may have a significant impact on the design of decking systems. Little research or development has been done on plank decking since the 1950’s and 1960’s. An experimental program was undertaken at the University of Ottawa’s structural laboratory to better understand the behaviour of plank decking under uniformly distributed and concentrated loads. Non-destructive and destructive tests were conducted on plank decking systems to investigate their stiffness and failure mode characteristics under uniformly distributed as well as concentrated loads. The experimental test program was complimented with a detailed finite element model in order to predict the behaviour of a plank decking system, especially the force transfer between decks through the tongue and groove joint. The study showed that the published deflection coefficients for uniformly distributed loads can accurately predict the three types of decking layup patterns specified in the Canadian Design Standard (CSA O86, 2009). For unbalanced uniformly distributed loads on two-span continuous layup, it was found that the deflection coefficient of 0.42 was non-conservative. It was also found that under concentrated loads, the stiffness of the decking system increased significantly as more boards were added. A deflection coefficient of 0.40 is appropriate to calculate the deflection for the three types of decking layup patterns specified in the Canadian Design Standard (CSA O86, 2009) under concentrated load on an area of 200 mm by 200 mm. Significant load sharing was observed for plank decking under concentrated loads. An increase in capacity of about 1.5 to 2.5 times the capacity of the loaded boards was found. Furthermore, it was found that placing sheathing on top of a decking system had a significant effect in the case of concentrated load with an increase of over 50% in stiffness and over 100% in ultimate capacity.
20

A Method for Approximating the Distributed Loads of an Airplane by Sets of Point Loads

Austin, Charles Wayne 06 1900 (has links)
This paper gives the derivation of a method for determining the forces to be applied to these points which will simulate the load distributed over all the airplane.

Page generated in 0.0261 seconds