• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluating the use of neighborhoods for query dependent estimation of survival prognosis for oropharyngeal cancer patients

Shay, Keegan P. 01 May 2019 (has links)
Oropharyngeal Cancer diagnoses make up three percent of all cancer diagnoses in the United States per year. Recently, there has been an increase in the incidence of HPV-associated oropharyngeal cancer, necessitating updates to prior survival estimation techniques, in order to properly account for this shift in demographic. Clinicians depend on accurate survival prognosis estimates in order to create successful treatment plans that aim to maximize patient life while minimizing adverse treatment side effects. Additionally, recent advances in data analysis have resulted in richer and more complex data, motivating the use of more advanced data analysis techniques. Incorporation of sophisticated survival analysis techniques can leverage complex data, from a variety of sources, resulting in improved personalized prediction. Current survival prognosis prediction methods often rely on summary statistics and underlying assumptions regarding distribution or overall risk. We propose a k-nearest neighbor influenced approach for predicting oropharyngeal survival outcomes. We evaluate our approach for overall survival (OS), recurrence-free survival (RFS), and recurrence-free overall survival (RF+OS). We define two distance functions, not subject to the curse of dimensionality, in order to reconcile heterogeneous features with patient-to-patient similarity scores to produce a meaningful overall measure of distance. Using these distance functions, we obtain the k-nearest neighbors for each patient, forming neighborhoods of similar patients. We leverage these neighborhoods for prediction in two novel ensemble methods. The first ensemble method uses the nearest neighbors for each patient to combine globally trained predictions, weighted by their accuracies within a selected neighborhood. The second ensemble method combines Kaplan-Meier predictions from a variety of neighborhoods. Both proposed methods outperform an ensemble of standard global survival predictive models, with statistically significant calibration.

Page generated in 0.1099 seconds