1 |
One-Dimensional Velocity Distributions of Fast Ions under RF Heating Including Doppler Shift in TokamaksBähner, Lukas January 2022 (has links)
The goal of nuclear fusion research is to create a clean and virtually limitless energy source. In order to that, a plasma must be heated to hundreds of millions degrees Celsius. A commonly used heating mechanism is ion cyclotron resonance heating, where antennas emit radio waves into the plasma. The wave can resonate with the ions at their cyclotron frequency, which leads to wave absorption. In order to investigate and improve the heating, one can perform computer simulations. FEMIC is a finite element model for ICRH that calculates the wave field created by the antennas. However, this code does not take into account how the wave modifies the velocity distribution of the plasma. Therefore, a time-independent Fokker-Planck solver is implemented that computes the fast ion distribution due to the incident wave field calculated with FEMIC. The novelty of this code is to include Doppler shift, which influences where ions resonate and how they are heated. / Målet med fusionsforskningen är att skapa en ren energikälla som kan producera obegränsade mängder energi. För detta krävs att ett plasma värms till hundratals miljoner grader Celsius. En vanlig teknik för att värma plasmat är joncyklotronuppvärmning, där en antenn emitterar radiovågor som propagerar in i plasmat. Om vågen är i resonans med jonernas cyklotronrörelse leder detta till att vågen absorberas av jonerna. För att studera och utveckla denna uppvärmningsteknik kan man använda datorsimuleringar. FEMIC är en kod baserad på den finita elementmetoden som beräknar vågfälten som skapas av antennen. Med denna kod kan vi dock inte beräkna hur vågen påverkar jonernas fördelningsfunktioner. Därför har en Fokker-Planck-lösare implementerats som kan beräkna fördelningen av snabba joner som accelererats av vågfältet från FEMIC. Det nya i denna modell är att koden tar hänsyn till Dopplerskiftet, vilket påverkar var jonerna är i resonans med vågen och hur de värms upp.
|
2 |
Ανάπτυξη παθητικών συστημάτων μελέτης ενδοκρανιακών θερμοκρασιακών μεταβολών και εγκεφαλικών διεργασιώνΚαραθανάσης, Κωνσταντίνος 20 October 2010 (has links)
Η ανίχνευση με τη χρήση μικροκυμάτων παίζει πολύ σημαντικό ρόλο στην
τεχνολογική εξέλιξη του κόσμου τα τελευταία 50 χρόνια. Από τα ραντάρ μέχρι τη
Μικροκυματική Ραδιομετρία, η ανίχνευση με τη χρήση μικροκυμάτων έχει
χρησιμοποιηθεί για έναν αυξανόμενο αριθμό εφαρμογών σε διάφορα επιστημονικά
πεδία, μεταξύ των οποίων η χαρτογράφηση του εδάφους, ο καθορισμός της υγρασίας
του εδάφους, η θερμογραφία και η ανίχνευση του καρκίνου του μαστού. Έτσι, οι
μικροκυματικοί αισθητήρες, διαθέτοντας την ικανότητα να διαπερνούν πολλά είδη
μέσων (πχ. σύννεφα, βιολογικοί ιστοί), έχουν μια σημαντική θέση ανάμεσα σε άλλες
τεχνικές μέτρησης.
Η Μικροκυματική Ραδιομετρία αποτελεί ένα σημαντικό τομέα της
επιστημονικής έρευνας και εφαρμογής της ανίχνευσης με τη χρήση μικροκυμάτων,
καθώς αποτελεί μια παθητική μέθοδο ανίχνευσης της φυσικά εκπεμπόμενης χαοτικής
θερμικής ακτινοβολίας από κάθε σώμα που βρίσκεται σε θερμοκρασία άνω του
απόλυτου μηδενός (-273 Κελσίου). Ένα μικροκυματικό ραδιόμετρο είναι η συσκευή
που χρησιμοποιείται για τη διεξαγωγή ραδιομετρικών μετρήσεων. Η ραδιομετρία έχει
αποτελέσει ένα σημαντικό τομέα έρευνας όχι μόνο για την αξιολόγηση της
ατμόσφαιρας και της επιφάνειας της γης, αλλά και για την περαιτέρω διερεύνηση των
παθητικών μετρήσεων, με σημαντικές εφαρμογές ειδικά στον τομέα της βιοϊατρικής.
Στα πλαίσια της παρούσας Διδακτορικής Διατριβής μελετήθηκε σε θεωρητικό
και πειραματικό επίπεδο η βελτιστοποίηση των ιδιοτήτων ανίχνευσης ενός
Τρισδιάστατου Συστήματος Παθητικής Μικροκυματικής Ραδιομετρικής Απεικόνισης
για διαγνωστικές εφαρμογές εγκεφάλου. Η καινοτομία της προτεινόμενης μεθόδου
έγκειται στη χρήση μιας αγώγιμης ελλειψοειδούς κοιλότητας που δρα σαν
μορφοποιητής δέσμης, ώστε να επιτευχθεί μέγιστη συγκέντρωση και εστίαση της
ακτινοβολίας που εκπέμπει το φυσικό σώμα ενδιαφέροντος, σε συνδυασμό με
ευαίσθητους ραδιομετρικούς δέκτες και ομοιοκατευθυντικές κεραίες λήψης στο
φάσμα συχνοτήτων 1 – 4 GHz. Η μέτρηση πραγματοποιείται με την τοποθέτηση του
ανθρώπινου εγκεφάλου στην περιοχή της πρώτης εστίας και τη λήψη της
ακτινοβολίας που συγκλίνει, μέσω ανάκλασης στα τοιχώματα του ελλειψοειδούς, στη
δεύτερη εστία. Εκεί είναι τοποθετημένη η κεραία λήψης που συνδέεται στον
ευαίσθητο ραδιομετρικό δέκτη.
VI
Με σκοπό τη βελτίωση των ιδιοτήτων εστίασης του συστήματος,
πραγματοποιήθηκε η μοντελοποίησή του και ακολούθησε εκτενής ηλεκτρομαγνητική
μελέτη για την ανάλυση της επίδρασης διατάξεων προσαρμογής από κατάλληλα
υλικά στο εσωτερικό της ελλειψοειδούς κοιλότητας. Τα αποτελέσματα δείχνουν πως
με τη σωστή επιλογή των υλικών και των ιδιοτήτων τους, είναι δυνατό να επιτευχθεί
σημαντική βελτίωση του βάθους ανίχνευσης του κατωφλίου ανίχνευσης
θερμοκρασίας και της χωρικής διακριτικής ικανότητας του συστήματος.
Τα πειράματα με ομοιώματα που πραγματοποιήθηκαν, επαληθεύουν τις
βασικές αρχές λειτουργίας του συστήματος καθώς επίσης και την ευεργετική
επίδραση των διατάξεων προσαρμογής στις ιδιότητες εστίασής του, που μελετήθηκαν
θεωρητικά στο πρώτο στάδιο της έρευνας,. Τέλος, οι πειραματικές διαδικασίες, που
σχεδιάστηκαν με βάση πιθανές κλινικές εφαρμογές του συστήματος, δείχνουν ότι έχει
βασικά χαρακτηριστικά και ιδιότητες ώστε να αποτελέσει στο μέλλον κλινικό,
διαγνωστικό εργαλείο. / Microwave sensing has played an increasingly significant role in the world’s
technological advances over the past 50 years. From radar to radiometry, microwave
sensing has been used for a large number of applications, including ground mapping,
soil moisture determination, thermography, and breast cancer detection. With the
ability to safely penetrate many kinds of media (e.g., clouds or biological specimens),
microwave sensors find a significant place among other modalities of measurement.
Microwave radiometry is an important scientific research and application area
of microwave sensing because it provides a passive sensing technique for detecting
naturally emitted chaotic thermal radiation by any material object being above the
absolute zero temperature (-273 Celsius). A microwave radiometer is the device used
to conduct radiometric measurements. While radiometry has been a significant
research field for atmospheric and earth surface evaluations, it lends itself to further
exploration of passive measurements, with significant applications especially in the
biomedical field.
In the framework of the present PhD Thesis, a theoretical and experimental
optimization study of the sensing capabilities of a Three Dimensional Passive
Microwave Radiometry Imaging System for brain diagnostic applications was
performed. The novelty of the proposed methodology consists in the use of a
conductive ellipsoidal cavity acting as a beamformer to achieve maximum peak of
radiation pattern in order to measure the intensity of the microwave energy, radiated
by the medium of interest, by using sensitive microwave radiometers and relevant non
– contacting antennas within the range of 1 – 4 GHz. The measurement is realized by
placing the human brain in the region of the first focus and collecting the radiation
converged at the second focus by a receiving antenna connected to the
sensitive radiometer.
Towards the improvement of the system’s focusing properties, extended
electromagnetic analysis was performed in order to validate the impact of matching
configurations made from appropriate materials, located inside the ellipsoidal cavity.
The results show that with the appropriate choice of materials and careful assessment
of their properties, it is possible to significantly improve the system’s detection depth,
temperature detection level and spatial sensitivity.
VIII
The experimental procedures that were performed verify the proof of concept
and confirm the beneficial impact of matching configurations on the system’s
focusing properties, which was theoretically studied in the first part of the research.
Finally, the experimental set used in the study, related to possible clinical
applications, produced promising results regarding the potential perspective of the
system to serve as a future clinical diagnostic tool.
|
Page generated in 0.0948 seconds