• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Giant Plasmonic Energy and Momentum Transfer on the Nanoscale

Durach, Maxim 16 October 2009 (has links)
We have developed a general theory of the plasmonic enhancement of many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. It is shown that this interaction has a resonant nature. We have also demonstrated that renormalized interaction is a long-ranged interaction whose intensity is considerably increased compared to bare Coulomb interaction over the entire region near the plasmonic nanostructure. We illustrate this theory by re-deriving the mirror charge potential near a metal sphere as well as the quasistatic potential behind the so-called perfect lens at the surface plasmon (SP) frequency. The dressed interaction for an important example of a metal–dielectric nanoshell is also explicitly calculated and analyzed. The renormalization and plasmonic enhancement of the Coulomb interaction is a universal effect, which affects a wide range of many-body phenomena in the vicinity of metal nanostructures: chemical reactions, scattering between charge carriers, exciton formation, Auger recombination, carrier multiplication, etc. We have described the nanoplasmonic-enhanced Förster resonant energy transfer (FRET) between quantum dots near a metal nanoshell. It is shown that this process is very efficient near high-aspect-ratio nanoshells. We have also obtained a general expression for the force exerted by an electromagnetic field on an extended polarizable object. This expression is applicable to a wide range of situations important for nanotechnology. Most importantly, this result is of fundamental importance for processes involving interaction of nanoplasmonic fields with metal electrons. Using the obtained expression for the force, we have described a giant surface-plasmoninduced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions in nanowires, this giant SPIDER generates rectified THz potential differences up to 10 V and extremely strong electric fields up to 10^5-10^6 V/cm. It can serve as a powerful nanoscale source of THz radiation. The giant SPIDER opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine. Additionally, the SPIDER is an ultrafast effect whose bandwidth for nanometric wires is 20 THz, which allows for detection of femtosecond pulses on the nanoscale.
12

Ultrafast dynamics of nanoscale systems: NaNbO3 nanocrystals, colloidal silver nanoparticles and dye functionalized TiO2 nanoparticles

ALMEIDA, Euclides Cesar Lins 30 July 2012 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-04-27T13:00:02Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_Euclides_Almeida_Fisica.pdf: 5907240 bytes, checksum: 503a5b57e757a03f24206d4d3d26032c (MD5) / Made available in DSpace on 2017-04-27T13:00:02Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_Euclides_Almeida_Fisica.pdf: 5907240 bytes, checksum: 503a5b57e757a03f24206d4d3d26032c (MD5) Previous issue date: 2012-07-30 / CNPQ / O principal objetivo deste trabalho foi investigar fenômenos ópticos ultrarrápidos em sistemas nanoestruturados empregando diferentes técnicas espectroscópicas não lineares, tanto no domínio do tempo quanto no domínio da frequência. Para fornecer uma base adequada que permita entender os experimentos feitos nessa tese, os princípios físicos das espectroscopias ópticas não lineares são apresentados. Inicialmente é apresentada uma descrição da função resposta não linear no domínio do tempo. A evolução temporal da polarização óptica, que gera o sinal espectroscópico, é descrita em detalhes usando uma teoria de perturbação diagramática. Técnicas ópticas não lineares são apresentadas, tais como eco de fótons, bombeamento-e-sonda e hole burning, assim como o comportamento dinâmico de um material pode ser interpretado a partir do sinal gerado. A técnica de mistura degenerada de quatro ondas com luz incoerente foi usada para investigar, pela primeira vez, o defasamento ultrarrápido de éxcitons em uma vitrocerâmica contendo nanocristais de niobato de sódio. O tempo de defasamento medido (T2 = 20 fs) indica qu empregada para investigar processos de transferência de carga em colóides com nanopartículas de TiO2 e rodamina 6G. O comportamento do sinal de depleção transiente é comparado com o observado para a rodamina livre suspensa em etanol. A análise dos resultados permitiu atribuir o comportamento de depleção à transferência de carga de estados excitados termalizados das moléculas de corante para a banda de condução do semicondutor e a transferência no sentido inverso do semicondutor para as moléculas. / The main objective of this work was the investigation of ultrafast optical phenomena in selected nanostructured systems employing different nonlinear spectroscopic techniques, either in the time or the frequency domain. To provide an appropriate background to understand the performed experiments the principles of nonlinear optical spectroscopies are presented. Initially a description of the nonlinear optical response function in the time domain is given. The time evolution of the optical polarization, that gives rise to the spectroscopic signal, is described in detail using a diagrammatic perturbation theory. Nonlinear optical techniques are discussed such as photon echoes, pump-and-probe and hole-burning, as well as how the dynamical behavior of a material can be interpreted from the generated signals. The degenerate four-wave mixing technique with incoherent light was used to investigate for the first time the ultrafast dephasing of excitons in a glass-ceramic containing sodium niobate nanocrystals. The short dephasing time measured (T2 = 20 fs) indicates that different dephasing channels contribute for the excitonic dephasing, namely: electron-electron scattering, electron-phonon coupling and fast trapping of electrons in defects on the nanocrystals interface. Low-temperature luminescence experiments were also performed to measure excitonic and trap states lifetimes. The persistent spectral holeburning technique was applied to measure localized surface plasmons dephasing times in colloidal silver nanoparticles capped with different stabilizing molecules. The dependence of T2 with three different stabilizers was demonstrated and theoretically analyzed. The results show that the dephasing times are shorter than the theoretically calculated T2 using the bulk dielectric functions of the metal. This discrepancy is attributed to changes in the electronic density of states at the nanoparticles interface caused by the presence of the stabilizers. Ab-initio calculations based on the Density Functional Theory were performed to further understand the interaction between the nanoparticles and stabilizing agents. The femtosecond transient absorption technique was employed to study the ultrafast dynamics of in-gap states in a glassceramics containing sodium niobate nanocrystals. Two main temporal components were found for the excited state absorption signal: a fast component, with decay time of ≈ 1 ps, and a slower component which is attributed to deep trap states. This slower component is responsible for the excited state absorption contribution in optical limiting experiments previously reported in the literature. The dynamics of the optical limiting in this sample was also studied, in the millisecond range, exciting the sample with a train of femtosecond pulses. The optical limiting behavior reflects the dynamics of population in the excited and trap states and this dynamics was modeled using rate equations for the electronic states’ populations. Finally, the pump-andprobe transient absorption technique was employed to investigate charge-transfer processes in colloids with rhodamine 6G and TiO2 nanoparticles. The transient bleaching signal behavior is compared with the one observed for unlinked rhodamine 6G dissolved in ethanol. The analysis of the results allowed the attribution of the bleaching behavior to charge-transfer from thermalized excited states of the dye molecules to the semiconductor conduction band and to the back charge-transfer from the semiconductor to the molecules.
13

Study of the dynamics of biomolecules by high speed atomic force microscopy and surface enhanced Raman spectroscopy / L'étude dynamique des biomolécules par le microscope à force atomique haute-vitesse (HS-AFM) et la spectroscopie Raman exaltée de surface (SERS)

Aybeke, Ece Neslihan 08 July 2015 (has links)
Ce travail de thèse se focalise sur le couplage du microscope à force atomique haute–vitesse (HS-AFM) et de la spectroscopie Raman exaltée de surface (SERS) pour la détection des biomolécules. Nous avons élaboré un protocole de fabrication pour produire les substrats “SERS-actifs”. L’efficacité des substrats de nanoparticules cristalline d’or, d’argent ou bimétallique argent–or a été évaluée. Nous avons étudié l’impact des propriétés optiques et morphologiques des substrats sur l’intensité Raman en analysant des échantillons tests tels que la bipyridine éthylène et le bleu de méthylène. Nous nous sommes interessés à trois problematiques biologiques distinctes par analyses HS-AFM et SERS. Dans un premier cas, nous avons détecté la signature chimique de protéine cytochrome b5. Ce travail a été suivi par des études sur le changement de conformation de la protéine de choc thermique leuconostoc oenos Lo 18 en fonction de la concentration et du pH. La dernière application consiste en l’analyse des interactions membrane – virus. Afin de réaliser les analyses simultanées Raman/AFM, nous avons adapté notre protocole de fabrication pour couvrir la surface des pointes AFM commerciales par des nanoparticules d’or cristallines. Les études de diffusion Raman exaltée par effet de pointe (TERS) ont été effectuées sur les échantillons de disulfure de molybdène pour évaluer la qualité des pointes TERS. Pour finir, nous présentons une nouvelle configuration de couplage HS-AFM et spectroscopie Raman. Nous discutons des modifications et des défis rencontrés. / This thesis focuses on the coupling of High–Speed Atomic Force Microscopy (HS-AFM) and Surface Enhanced Raman Spectroscopy (SERS) for biomolecule analysis. We have designed a fabrication protocol to manufacture “SERS-active” substrates. The efficacy of gold, silver and gold-silver bimetallic crystalline nanoparticle substrates were evaluated. We have investigated the impact of optical and morphological features of the substrates on Raman signal intensity by analyzing well-known samples such as bipyridine ethylene and methylene blue molecules. We took an interest in three distinct biological problematics with HS-AFM and SERS analyses. First, we have detected the chemical signature of cytochrome b5 protein. This study was followed by the investigation of conformational changes of small heat shock leuconostoc oenos Lo 18 protein in function of pH level and concentrations. The last application consists to the analyse a membrane and a virus interaction. In order to realize simultaneous Raman/AFM analysis, we have adapted our fabrication protocol to cover the surface of commercial AFM probes by crystalline gold nanoparticles. Tip – Enhanced Raman Spectroscopy (TERS) studies were performed on molybdenum disulfide to evaluate the quality of TERS probes. In the last part of this work, we have designed a new setup to combine Ando’s HS-AFM setup with Raman spectroscopy. We present the modifications that have been carried out and the challenges that we have encountered.

Page generated in 0.0819 seconds