• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure-Function Relationships of Pi Class Glutathione Transferase Studied by Protein Engineering

Hegazy, Usama M. January 2006 (has links)
<p>The glutathione transferases (GSTs) represent a superfamily of dimeric proteins involved in cellular detoxication by catalyzing the nucleophilic addition of the reduced glutathione (GSH) to the hydrophobic electrophiles. The present work focuses on the functional role of the conserved structures of GSTP1-1. The lock-and-key motif is a highly conserved hydrophobic interaction in the subunit interface of Pi, Mu, and Alpha class GSTs. The key residue (Tyr<sup>50</sup> in hGSTP1-1) of one subunit is wedged into a hydrophobic pocket of the neighboring subunit. The heterodimer GSTP1/Y50A was constructed from the fully active wild-type GSTP1-1 and the nearly inactive Y50A in order to study how an essentially inactive subunit influences the activity of the neighboring subunit. The results illuminate the vital role of the lock-and-key motif in modulating the GSH binding and the rate of catalysis. Additionally, the two active sites of the dimeric enzyme work synergistically. An observed water network, in hGSTP1-1 structures, connects the two active sites, thereby offering a mechanism for communication between the two active sites.</p><p>Cys<sup>48</sup> and Tyr<sup>50</sup> were targeted by mutations and chemical modifications for understanding how the α2 loop residues modulate GSH binding and catalysis. The replacement of Tyr<sup>50</sup> with different unnatural amino acids showed that the nature of the key residue side-chain influences the interaction with the lock structure and, consequently, the catalytic activity. The K<sub>M</sub><sup>GSH</sup>, GSH affinity and protein stability can be modulated by fitting key residue into the lock cavity of the neighbor subunit and, consequently, restriction of the flexibility of the α2 loop. Optimization of the interaction between the key residue and the lock-cavity increases k<sub>cat</sub>. Also, the crystal structure of the Cys-free variant was determined. The result indicated that Cys<sup>48</sup> restricts the flexibility of the α2 loop by interacting with surrounding residues and, consequently, contributes to GSH binding and protein stability.</p>
2

Structure-Function Relationships of Pi Class Glutathione Transferase Studied by Protein Engineering

Hegazy, Usama M. January 2006 (has links)
The glutathione transferases (GSTs) represent a superfamily of dimeric proteins involved in cellular detoxication by catalyzing the nucleophilic addition of the reduced glutathione (GSH) to the hydrophobic electrophiles. The present work focuses on the functional role of the conserved structures of GSTP1-1. The lock-and-key motif is a highly conserved hydrophobic interaction in the subunit interface of Pi, Mu, and Alpha class GSTs. The key residue (Tyr50 in hGSTP1-1) of one subunit is wedged into a hydrophobic pocket of the neighboring subunit. The heterodimer GSTP1/Y50A was constructed from the fully active wild-type GSTP1-1 and the nearly inactive Y50A in order to study how an essentially inactive subunit influences the activity of the neighboring subunit. The results illuminate the vital role of the lock-and-key motif in modulating the GSH binding and the rate of catalysis. Additionally, the two active sites of the dimeric enzyme work synergistically. An observed water network, in hGSTP1-1 structures, connects the two active sites, thereby offering a mechanism for communication between the two active sites. Cys48 and Tyr50 were targeted by mutations and chemical modifications for understanding how the α2 loop residues modulate GSH binding and catalysis. The replacement of Tyr50 with different unnatural amino acids showed that the nature of the key residue side-chain influences the interaction with the lock structure and, consequently, the catalytic activity. The KMGSH, GSH affinity and protein stability can be modulated by fitting key residue into the lock cavity of the neighbor subunit and, consequently, restriction of the flexibility of the α2 loop. Optimization of the interaction between the key residue and the lock-cavity increases kcat. Also, the crystal structure of the Cys-free variant was determined. The result indicated that Cys48 restricts the flexibility of the α2 loop by interacting with surrounding residues and, consequently, contributes to GSH binding and protein stability.

Page generated in 0.058 seconds