1 |
Building Platforms to Genetically Encode New ChemistryJohnson, Alexander M. January 2017 (has links)
Thesis advisor: Abhishek Chatterjee / Abstract Unnatural amino acid (UAA) incorporation is a powerful tool used by biochemists to discover the nature of protein structure and function. The evolution of orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pairs enables site-specific incorporation of UAAs proteins inside of living cells. The goal of this study was to further expand the repertoire of genetically encoded unnatural amino acids in E. coli as well as eukaryotes. We first attempted to engineer an aaRS, previously evolved for p-borono-phenylalanine (pBoF), to specifically charge 3-acetyl-p-borono-phenylalanine (AcpBoF). A randomized library of the pBoF-specific synthetases was generated and it was subjected to established selection schemes in a bacterial host. This report also describes the development of a yeast-based selection system to alter the substrate specificity of bacterial leucyl-tRNA synthetase, for genetic code expansion in eukaryotes. / Thesis (MS) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
2 |
Catalysis and Regulation of the Allosteric Enzyme Aspartate TranscarbamoylaseMendes, Kimberly Rose Marie January 2010 (has links)
Thesis advisor: Evan R. Kantrowitz / The understanding of how cells regulate and control all aspects of their function is vital for our ability to intervene when these control mechanisms break down. Almost all modes of cellular regulation can be related in some manner to protein conformational changes such as the quaternary conformational changes of allosteric enzymes that alter enzyme activity to regulate metabolism. The control of metabolic pathways by allosteric enzymes is analogous to a molecular valve with "on" and "off" positions. In the "off" position, flow through the pathway is severely hindered, while in the "on" position the flow is normal. For a comprehensive understanding of allosteric regulation we must elucidate in molecular detail how the allosteric signal is transmitted to the active site to alter enzyme activity. In this work we use unnatural amino acid mutagenesis to introduce a fluorescent amino acid into the allosteric binding site of aspartate transcarbamoylase (ATCase), the enzyme responsible for regulation of pyrimidine nucleotide biosynthesis. The fluorescence from the amino acid is exquisitely sensitive to the binding of the allosteric effectors ATP, CTP, UTP, and GTP. In particular we show how the asymmetric nature of the allosteric sites of the enzyme are used to achieve regulatory sensitivity over a broad range of mixed heterotropic effector concentrations as is observed in the cell. Furthermore, employing the method of random sampling - high dimensional model representation (RS-HDMR) we derived a model for how ATCase is regulated when all four nucleotides are present at fluctuating concentrations, consistent with physiological conditions. We've discovered the fundamental requirements to induce the allosteric transition to the R state by showing that although ATCase can accept L-asparagine as an unnatural substrate, the transition to the R allosteric state requires the correct positioning of the alpha-carboxylate of its natural substrate L-aspartate. However, linking the functionalities of L-asparagine and carbamoyl phosphate into a single molecule is sufficient to correctly position the bi-substrate analog in the active site to induce the allosteric transition to the R-state. The cooperative nature of ATCase was further investigated through the isolation of a unique quaternary structure of ATCase consisting of two catalytic trimers linked covalently by disulfide bonds. By relieving the quaternary constraints imposed by the bridging regulatory subunits of the native holoenzyme, the flexibility of the c6 subunit significantly enhanced enzyme activity over the native holoenzyme. Unlike the native c3 catalytic subunit, the c6 species displays homotropic cooperativity for L-aspartate demonstrating that, when two catalytic trimers are linked, a binding event at one or more active sites can be transmitted through the molecule to the other active sites in the absence of regulatory subunits. The catalytic reaction of ATCase follows an ordered sequential mechanism that is complicated by the transition from the T state to the R state upon the binding of the second substrate L-aspartate. Acquiring X-ray crystal structures at each step along the pathway has advanced our understanding of the catalytic mechanism, yet R-state structures are difficult to obtain. Using a mutant version of ATCase locked in the R-allosteric state by disulfide bonds we captured crystallographic images of ATCase in the R state bound to the true substrates (CP and Asp), products (CA and Pi), and in the process of releasing the final product (Pi) prior to reversion of the molecule to the T state. These structures depict the steps in the catalytic cycle immediately before the catalytic reaction occurs, immediately after the reaction, and after the first product has been released from the active site. This work also focuses on developing allosteric inhibitors of the enzyme fructose-1,6-bisphosphatase (FBPase), one of the enzymes responsible for regulation of the gluconeogenesis pathway. Inhibitors of FBPase could serve as potential therapeutic agents against type-2 diabetes. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
3 |
Investigating Host-Viral Interactions in Liver Lipid Homeostasis and HCV PathologyDelcorde, Julie January 2014 (has links)
Hepatitis C virus (HCV) infects an estimated 170 million people worldwide and is a major cause of chronic hepatitis and hepatocellular carcinoma. As there are limited treatment options, the elucidation of novel host-viral interactions during HCV pathogenesis will be critical for the development of new therapeutics. My thesis work has identified cell death-inducing DFF45-like effector B (CIDEB) as a host factor that is disregulated during HCV infection, and has delineated the relevance of CIDEB’s dual roles in apoptosis and lipid metabolism in the context of the HCV lifecycle. Moreover, additional host factors necessary for the HCV lifecycle were investigated using unnatural amino acid (UAA) technology. With this technique, the photo-cross-linking UAA p-azido-phenlyalanine (AZF) and 3’-azibutyl-N-carbamoyl-lysine (Abk) were incorporated into viral proteins by expanding the genetic code of the host organism. This conferred diverse physicochemical and biological properties to these proteins that were exploited to investigate protein structure and function in vitro and in vivo. In summary, gaining insight into the numerous host-viral interactions that take place during HCV infection will both advance our understanding of HCV pathogenesis and uncover potential therapeutic targets.
|
4 |
Enhancing Platforms at the Interface of Viruses and Directed Evolution:Levinson, Samantha D. January 2021 (has links)
Thesis advisor: Abhishek Chatterjee / Directed evolution is a powerful technique to expand chemical space in biological systems. In particular, this method has been used to develop cellular machinery to enable genetic code expansion (GCE), the incorporation of unnatural amino acids (UAAs) into proteins during the translation process. GCE relies on evolving an aminoacyl tRNA synthetase (aaRS) and tRNA pair from a different domain of life to incorporate a UAA into proteins in their new host, as these evolutionarily distant pairs are less likely to be cross-reactive with host pairs. The aaRS and tRNA must meet a number of conditions to be useful for GCE: the pair must be orthogonal (non-cross-reactive) to the host’s native aaRS/tRNA pairs in order to ensure site-specific UAA incorporation; the aaRS must have an active site suited to accept the shape of the UAA; and the tRNA must cooperate with the host ribosome, elongation and release factors, and other translational machinery to efficiently incorporate the UAA into the protein. Numerous aaRS/tRNA pairs have been evolved to allow incorporation of diverse UAAs in bacteria due to the tractable nature of these organisms for directed evolution experiments. While an aaRS evolved in bacteria to charge a novel UAA can be used in eukaryotes, tRNAs cannot be evolved for GCE in bacteria and then used in eukaryotes because they will not have evolved in the presence of the correct translational machinery. It is necessary to evolve tRNAs directly in their host cells. Unfortunately for researchers working on GCE in mammalian cells, it is difficult to perform directed evolution on small gene products in these hosts. Transformation efficiency in mammalian cells is poor, and transient transfection yields heterogeneous DNA distribution to target cells, making selection based on performance of individual library members impossible. Viruses are an ideal DNA delivery vector for mammalian cells, as production of recombinant viruses allows control over library member generation, and viruses can be delivered with exquisite copy number control. The Chatterjee lab recently developed a platform, Virus-Assisted Directed Evolution of tRNAs (VADER), using adeno-associated virus (AAV) to evolve tRNAs for GCE directly in mammalian cells.
While VADER is the first directed evolution platform that allows the evolution of small gene products in mammalian cells, its efficiency is limited by its continued reliance on transient transfection to deliver non-library DNA that is necessary for the production of rAAV. To overcome this limitation, baculovirus delivery vectors were developed to boost DNA delivery and AAV capsid production to improve virus production efficiency during selections. VADER allows the evolution of tRNAs to incorporate certain UAAs, but the technique relies on installing a UAA into the AAV capsid, which is sensitive to disruption caused by slight modifications in structure. To expand the scope of VADER to evolve tRNAs for UAAs that cannot be incorporated into the AAV capsid, an alternate selection handle (Assembly Activating Protein, or AAP) was deleted from the genome and provided in trans to incorporate 5-hydroxytryptophan (5HTP). Incorporating the UAA into this flexible protein allows UAA-dependent production of AAV and expands the scope of tRNAs that can be evolved in mammalian cells. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
5 |
Optimization of in vitro transcription/translation conditions for in vitro compartmentalization studies and synthesis of 4-fluorohistidineRing, Christine 01 January 2017 (has links)
Genetic code expansion allows the incorporation of non-canonical amino acids with a variety of new functional groups: fluorescent amino acids,1-3 azides,4-6 alkynes,5-10 and photocrosslinkers.4,11,12 This incorporation requires the evolution of new tRNA/aminoacyl tRNA sythetase pairs. Traditionally screenings of novel tRNA/aminoacyl tRNA synthetase pairs have been done in vivo. While these in vivo screenings have proven robust, they are limited in multiple ways: non-canonical amino acids (ncAAs) must be nontoxic and bioavailable. Furthermore, library size is limited by transformation efficiency. Lastly, in vivo screenings require substantial amounts of the target ncAA, which is often not available in large masses. In vitro screenings bypass these limitations: toxicity and bioavailibilty are no longer concerns. Library size can be expanded by several orders of magnitude as we are no longer limited by transformation efficiency. Lastly, because in vitro transcription/translation reactions are routinely conducted on the μL scale, ncAA usage can be minimized. We set out to use in vitro compartmentalization to further expand the code. In an in vitro compartmentalization screening, the water droplets in a water-in-oil emulsion serve as separate reaction chambers in which individual library members are transcribed and translated. Here we report optimization of S30 transcription/translation reactions. Optimizations include cell lysis method, reaction temperature, template amount, and T7 RNA polymerase amounts. Yields remained low and we transistioned into the use of PURExpress.
Fluorohistidines are isosteric with histidine, but not isoelectronic.13 This change in environment results in a reduction of pKa. We set out to synthesize 4-fluorohistidine to use as a pH probe in several target proteins. A synthesis of 4-fluorohistidine was published in 1973.14,15 We were able to improve upon this synthesis by reducing cost and improving yield of a key step in the reaction. Next, small peptides with polyhistidine tags were translated in vitro using our 4-fluorohistidine. We are calling this polyhistidine tag incorporating 4-fluorohistidine our “hexafluorohistag.” Because of the reduced pKa of the 4-fluorohistidine, the hexafluorohistag showed affinity to Nickel-NTA resin even at reduced pH. This allowed for the purification of hexafluorohistagged peptides in the presence of traditional polyhistidine-tagged peptides.
|
6 |
Investigations in amine chemistry: Mn-Mediated radical addition approach toward gamma amino esters and synthetic studies of the tubulysinsBanerjee, Koushik 01 July 2011 (has links)
Mn-Mediated radical addition has been developed within the Friestad laboratory as a versatile method toward addition to C=N bonds. N-Acylhydrazones generated by condensation between an aldehyde and an N-acylamine serves as the substrate toward radical addition. A bulky directed group attached with the N-acyl moiety and restricted rotation around N-N bond due to a three point chelation with a Lewis acid differentiates the faces of the C=N bond of the N-acylhydrazones. Radical generation initiated by photolysis of Mn2(CO)10 causing homolysis of C-X bond in alkyl halide serves as the radical donor to the N-acylhydrazones. Radical addition thereafter occurs stereoselectively from the less hindered face of the C=N bond of the N-acylhydrazones. The product N-acylhydrazines can be effectively transformed to α-chiral amines. In this thesis, a new protocol toward generation of non-proteogenic γ-amino esters using Mn-mediated radical addition has been described. Moreover, the utility of the Mn-mediated radical addition has been demonstrated through studies toward synthesis of tubulysin U and V.
Chapter 3 describes a new strategy for asymmetric synthesis of γ-amino esters starting from non-amino precursors. The α-substituted γ-amino esters are prevalent in drugs, drug candidates, and in peptidomimetics. As a part of progressing the Mn-mediated radical addition reaction, highly stereoselective reactions were devised for addition to N-acylhydrazonoesters in absence of Lewis acid. Spectroscopic investigations were carried out to decipher the Lewis acid chelation of N-acylhydrazones. Finally, a novel microwave mediated trifluoroacylation of N-acylhydrazinoesters facilitated the cleavage of N-N bond to liberate γ-aminoester.
Chapter 4 describes application of Mn-mediated radical addition toward synthesis of tubulysin natural products. Tubulysins are natural products, isolated from myxobacteria, that have exhibited potent cytotoxicity toward cancer cells in the picomolar regime. The Mn-mediated radical addition was used to prepare two chiral amine subunits in highly diastereoselective fashion. The subunits were then assembled after required manipulations into the tetrapeptide structure characteristic of tubulysins. This strategy to synthesize tubulysins is the most stereoselective of all efforts toward the synthesis of this molecule. Synthesis toward tubulysin was achieved in 18 steps as the longest linear sequence with a 31% overall yield to tubulysin V in benzyl protected form.
Chapter 5 describes a new strategy toward installation of N-hydroxymethyl unit into a peptide chain. N,O-Acetals are acid-base labile species that is present in some tubulysin natural analogs. This new approach exploits Fleming-Tamao oxidation and hence introduce the hydroxymethyl unit of the N,O-acetal in a masked form. Following peptide construction the masked hydroxy group is released to liberate the N-hydroxymethyl moiety. Acylation of the free hydroxy group furnishes the N,O-acetal moiety in a strategy that is potentially applicable toward synthesis of tubulysin D.
|
7 |
Fluorescent Probes to Investigate Homologous Recombination DynamicsDavenport, Eric Parker 01 May 2016 (has links)
There are multiple mechanisms by which DNA can become damaged. Such damage must be repaired for the cell to avoid ill-health consequences. Homologous recombination (HR) is a means of repairing one specific type of damage, a double-strand break (DSB). This complex pathway includes the Rad51-DNA nucleoprotein filament as its primary machinery. Current methodology for studying HR proteins includes the use of fluorescently labeled DNA to probe for HR dynamics. This technique limits the number of proteins that can be involved in experimentation, and often only works as an end reporter. The work here aims at improving upon standard techniques by creating two fluorescent protein probes. The first probe was developed by directly attaching a fluorophore to Saccharomyces cerevisiae Rad51 with the use of click chemistry and the incorporation of unnatural amino acids. This probe could function as a primary reporter on the formation and dissociation of the Rad51-DNA filament in the presence of pro- and anti- HR mediator proteins. The second probe was created by labeling the exterior cysteine residues of Plasmodium falciparum single strand DNA binding protein (SSB) with a fluorophore via maleimide chemistry. This probe acts as a secondary reporter for HR dynamics by signaling for when free single stranded DNA (ssDNA) is available.
|
8 |
Protein evolution in the presence of an unnatural amino acidSingh, Amrita, active 2012 04 March 2014 (has links)
The field of protein engineering has been greatly augmented by the expansion of the genetic code using unnatural amino acids as well as the development of cell-free synthesis systems with high protein yield. Cell-free synthesis systems have improved considerably since they were first described almost 40 years ago. Residue specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an amino acid depleted cell-free protein synthesis system that can be used to study residue specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines high protein expression yields with a high level of analog substitution in the target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid-depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo format. We use this amino acid depleted cell-free synthesis system for the directed evolution of streptavidin, a protein that finds wide application in molecular biology and biotechnology. We evolve streptavidin using in vitro compartmentalization in emulsions to bind to desthiobiotin and find, at the conclusion of our experiment, that our evolved streptavidin variants are capable of binding to both biotin and desthiobiotin equally well. We also discover a set of mutations for streptavidin that are potentially powerful stabilizing mutations that we believe will be of great use to the greater research community. / text
|
9 |
Emerging biotechnology to detect weak and/or transient protein-protein interactionsThibodeaux, Gabrielle Nina 30 April 2014 (has links)
Protein-protein interactions are of great importance to a number of essential biological processes including cell cycle regulation, cell-cell interactions, DNA replication, transcription and translation. Thus, an understanding of protein-protein interactions is critical for understanding many facets of cell function. Unfortunately, the tools and methods currently in use to identify and study protein-protein interactions focus largely on high affinity, stable interactions. However, the majority of the protein-protein interactions involved in regulatory processes have weak affinities and are transient in nature. Therefore, it is important to develop new biotechnology capable of detecting weak and/or transient protein-protein interactions in vivo. Here, we describe four new methods that allow for the identification and study of weak and/or transient protein-protein interactions in vivo. First, we developed a rapid method to convert Escherichia coli orthogonal tRNA/synthetase pairs into an orthogonal system for mammalian cells in order to site-specifically incorporate unnatural amino acids into any gene of interest using stop codon suppression. This method will allow the expression and purification of proteins that carry normally transient post-translational modifications. Second, we successfully employed site-specific unnatural amino acid incorporation to chemically cross-link a known homodimer, Sortase A, in vivo. Third, we developed a novel tetracycline repressor-based mammalian two-hybrid system and successfully detected homo- and hetero-dimers that are known to have weak binding constants. Finally, a synthetic antibody (termed a synbody) that binds weakly to the SH3 domain of the proto-oncogene Abelson tyrosine kinase was developed. The synbody can potentially be used as a first generation drug and/or biomarker. We hope that the methods developed in this dissertation will enable the scientific community to better understand weak/transient protein-protein interactions in vivo. / text
|
10 |
Method Development for Efficient Incorporation of Unnatural Amino AcidsHarris, Paul D. 04 1900 (has links)
The synthesis of proteins bearing unnatural amino acids has the potential to enhance and elucidate many processes in biochemistry and molecular biology. There are two primary methods for site specific unnatural amino acid incorporation, both of which use the cell’s native protein translating machinery: in vitro chemical acylation of suppressor tRNAs and the use of orthogonal amino acyl tRNA synthetases. Total chemical synthesis is theoretically possible, but current methods severely limit the maximum size of the product protein. In vivo orthogonal synthetase methods suffer from the high cost of the unnatural amino acid. In this thesis I sought to address this limitation by increasing cell density, first in shake flasks and then in a bioreactor in order to increase the yield of protein per amount of unnatural amino acid used. In a parallel project, I used the in vitro chemical acylation system to incorporate several unnatural amino acids, key among them the fluorophore BODIPYFL, with the aim of producing site specifically fluorescently labeled protein for single molecule FRET studies. I demonstrated successful incorporation of these amino acids into the trial protein GFP, although incorporation was not demonstrated in the final target, FEN1. This also served to confirm the effectiveness of a new procedure developed for chemical acylation.
|
Page generated in 0.0888 seconds