• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • Tagged with
  • 29
  • 29
  • 29
  • 15
  • 12
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

From Probes to Cell Surface Labelling: Towards the Development of New Chemical Biology Compounds and Methods

Legault, Marc 29 June 2011 (has links)
Chemical biology encompasses the study and manipulation of biological system using chemistry, often by virtue of small molecules or unnatural amino acids. Much insight has been gained into the mechanisms of biological processes with regards to protein structure and function, metabolic processes and changes between healthy and diseased states. As an ever expanding field, developing new tools to interact with and impact biological systems is an extremely valuable goal. Herein, work is described towards the synthesis of a small library of heterocyclic-containing small molecules and the mechanistic details regarding the interesting and unexpected chemical compounds that arose; an alternative set of non-toxic copper catalyzed azide-alkyne click conditions for in vivo metabolic labelling; and the synthesis of an unnatural amino acid for further chemical modification via [3+2] cycloadditions with nitrones upon incorporation into a peptide of interest. Altogether, these projects strive to supplement pre-existing methodology for the synthesis of small molecule libraries and tools for metabolic labelling, and thus provide further small molecules for understanding biological systems.
22

From Probes to Cell Surface Labelling: Towards the Development of New Chemical Biology Compounds and Methods

Legault, Marc 29 June 2011 (has links)
Chemical biology encompasses the study and manipulation of biological system using chemistry, often by virtue of small molecules or unnatural amino acids. Much insight has been gained into the mechanisms of biological processes with regards to protein structure and function, metabolic processes and changes between healthy and diseased states. As an ever expanding field, developing new tools to interact with and impact biological systems is an extremely valuable goal. Herein, work is described towards the synthesis of a small library of heterocyclic-containing small molecules and the mechanistic details regarding the interesting and unexpected chemical compounds that arose; an alternative set of non-toxic copper catalyzed azide-alkyne click conditions for in vivo metabolic labelling; and the synthesis of an unnatural amino acid for further chemical modification via [3+2] cycloadditions with nitrones upon incorporation into a peptide of interest. Altogether, these projects strive to supplement pre-existing methodology for the synthesis of small molecule libraries and tools for metabolic labelling, and thus provide further small molecules for understanding biological systems.
23

From Probes to Cell Surface Labelling: Towards the Development of New Chemical Biology Compounds and Methods

Legault, Marc January 2011 (has links)
Chemical biology encompasses the study and manipulation of biological system using chemistry, often by virtue of small molecules or unnatural amino acids. Much insight has been gained into the mechanisms of biological processes with regards to protein structure and function, metabolic processes and changes between healthy and diseased states. As an ever expanding field, developing new tools to interact with and impact biological systems is an extremely valuable goal. Herein, work is described towards the synthesis of a small library of heterocyclic-containing small molecules and the mechanistic details regarding the interesting and unexpected chemical compounds that arose; an alternative set of non-toxic copper catalyzed azide-alkyne click conditions for in vivo metabolic labelling; and the synthesis of an unnatural amino acid for further chemical modification via [3+2] cycloadditions with nitrones upon incorporation into a peptide of interest. Altogether, these projects strive to supplement pre-existing methodology for the synthesis of small molecule libraries and tools for metabolic labelling, and thus provide further small molecules for understanding biological systems.
24

In Vivo Labeling Of A Model β-Clam Protein With A Fluorescent Amino Acid

Periasamy, Mangayarkarasi 01 January 2010 (has links) (PDF)
Proteins can be labeled with different tags to enable their structural and functional investigations. In addition, labeling proteins at specific sites helps in studying the conformational dynamics of these molecules. A plethora of methods is available to facilitate labeling, choice of which largely depends on the requirements and the anticipated end results. In general, the various labeling methods can be classified into four different classes based on the stage at which labeling is performed, namely post translational labeling, non-ribosomal synthesis, in vitro translation and in vivo translation. Interestingly all these techniques use different unnatural amino acids for this purpose. Protein folding is one among the many applications that requires tailoring proteins with special molecules or labels for deducing the folding pathway. Understanding the protein folding problem is a key for answering questions concerning protein behavior and thus, will provide strategies to solve protein misfolding diseases. Protein folding is one among the unsolved problems in biology and in particular understanding the in vivo behavior of proteins in the complex cytoplasm environment with a cellular density of approximately 350 to 400 mg/ml is more critical. It is evident that there is a difference in the behavior and folding of proteins in vivo and in vitro and to deduce more insights in this aspect the protein of interest is to be labeled with a sensitive probe. The in vivo translation method offers a good method of choice for labeling the protein at a specific position and monitoring its behavior. To study the ultimate goals of acquiring knowledge of the in vivo behavior and folding characteristics of proteins, the first step of establishing an efficient labeling technique is quintessential and as a starting step, this project aims to label a β-clam protein, cellular retinoic acid binding protein I (CRABP I) a 136 amino acid protein, with a sensitive unnatural fluorescent amino acid probe in vivo in E. coli cells.
25

Aminoacyl-tRNA Synthetase Production for Unnatural Amino Acid Incorporation and Preservation of Linear Expression Templates in Cell-Free Protein Synthesis Reactions

Broadbent, Andrew 01 March 2016 (has links) (PDF)
Proteins—polymers of amino acids—are a major class of biomolecules whose myriad functions facilitate many crucial biological processes. Accordingly, human control over these biological processes depends upon the ability to study, produce, and modify proteins. One innovative tool for accomplishing these aims is cell-free protein synthesis (CFPS). This technique, rather than using living cells to make protein, simply extracts the cells' natural protein-making machinery and then uses it to produce protein in vitro. Because living cells are no longer involved, scientists can freely adapt the protein production environment in ways not otherwise possible. However, improved versatility and yield of CFPS protein production is still the subject of considerable research. This work focuses on two ideas for furthering that research.The first idea is the adaptation of CFPS to make proteins containing unnatural amino acids. Unnatural amino acids are not found in natural biological proteins; they are synthesized artificially to possess useful properties which are then conferred upon any protein made with them. However, current methods for incorporating unnatural amino acids do not allow incorporation of more than one type of unnatural amino acid into a single protein. This work helps lay the groundwork for the incorporation of different unnatural amino acid types into proteins. It does this by using modified aminoacyl-tRNA synthetases (aaRSs), which are key components in CFPS, to be compatible with unnatural amino acids. The second idea is the preservation of DNA templates from enzyme degradation in CFPS. Among the advantages of CFPS is the option of using linear expression templates (LETs) in place of plasmids as the DNA template for protein production. Because LETs can be produced more quickly than plasmids can, using LETs greatly reduces the time required to obtain a DNA template for protein production. This renders CFPS a better candidate for high-throughput testing of proteins. However, LETs are more susceptible to enzyme-mediated degradation than plasmids are, which means that LET-based CFPS protein yields are lower than plasmid-based CFPS yields. This work explores the possibility of increasing the protein yield of LET-based CFPS by addition of sacrificial DNA, DNA which is not used as a protein-making template but which is degraded by the enzymes in place of the LETs.
26

Hydrogen Bonds and Electrostatic Environment of Radical Intermediates in Ribonucleotide Reductase Ia

Nick, Thomas Udo 29 June 2015 (has links)
No description available.
27

Cell-Free Synthesis of Proteins with Unnatural Amino Acids: Exploring Fitness Landscapes, Engineering Membrane Proteins and Expanding the Genetic Code

Schinn, Song Min 01 August 2017 (has links)
Unnatural amino acids (uAA) expand the structural and functional possibilities of proteins. Numerous previous studies have demonstrated uAA as a powerful tool for protein engineering, but challenges also remain. Three notable such challenges include: (1) the fitness of uAA-incorporated proteins are difficult to predict and time-consuming to screen with conventional methods, (2) uAA incorporation in difficult-to-express proteins (e.g. membrane proteins such as G-protein coupled receptors) remain challenging, and (3) the incorporation of multiple types of uAA are still limited. In response, we pose cell-free protein synthesis (CFPS), a rapid and versatile in vitro expression system, as a platform to explore solutions to these challenges. The "cell-free" nature of CFPS enables it to accelerate protein expression and tolerate extensive modifications to its translational environment. In this work, these advantages were utilized to address the aforementioned challenges by: (1) rapidly expressing and screening uAA-containing proteins, (2) incorporating uAA in functional G-protein coupled receptor in the presence of membrane-mimicking lipid additives, and (3) engineer the translational environment extensively towards multiple uAA incorporation.
28

Advancing Cell-Free Protein Synthesis Systems for On-Demand Next-Generation Protein Therapeutics and Clinical Diagnostics

Zhao, Emily Ann Long 16 December 2021 (has links)
Recombinant proteins have many medical and industrial applications, but their use is complicated by commercial production and stability constraints. These issues are particularly challenging for recombinant proteins used in pharmaceutical therapeutics and clinical diagnostics. Expensive production and distribution limit the accessibility of therapeutics and diagnostics especially in the developing world. Additionally, clinical use of recombinant proteins face further challenges within biological systems including biological degradation and immunogenicity. To increase the accessibility of recombinant proteins, the cost and inefficiencies of protein manufacturing and distribution need to be significantly reduced. A powerful tool to aid in this endeavor is cell-free protein synthesis (CFPS) technology. CFPS is a versatile platform for recombinant protein production due to its open reaction environment, flexible reaction conditions, and rapid protein expression capabilities. These avoid the disadvantages of conventional manufacturing and present the capability of on-demand protein therapeutic production outside of centralized facilities. To improve the efficacy of recombinant proteins for medicinal use, protein engineering techniques such as PEGylation, or the conjugation of PEG polymers to protein surfaces, can be employed. PEGylation is widely used to enhance the pharmacokinetic properties of protein therapeutics. Deciphering optimal PEG conjugation sites is a continuing area of research that can be facilitated by CFPS systems that enable high-throughput, site-specific PEGylation. This dissertation presents advances in CFPS technology to promote increased accessibility and stability of life-saving therapeutics and diagnostics. The work presented here (1) improves on-demand therapeutic production capabilities by creating shelf-stable, endotoxin-free CFPS systems, (2) aids the rational design of next-generation PEGylated protein therapeutics through an in silico-in vitro CFPS screening platform, and (3) advances the development of portable clinical diagnostics for rapid and sustainable deployment at point-of-care through CFPS biosensor technology. The innovations of this dissertation are described in four publications. Specifically, an endotoxin-free CFPS system lyophilized with lyoprotectants is demonstrated that shows improved shelf-stability over standard lyophilized systems. A streamlined procedure for preparing endotoxin-free extract using auto-induction media is presented that significantly reduces CFPS preparation labor and time. A combinatorial screening approach is demonstrated in which coarse-grain molecular simulation informs PEGylation site selection as verified by CFPS experimental results. An inexpensive paper-based, saliva-activated CFPS biosensor platform is developed for the detection of SARS-CoV-2 sequences.
29

Designing Cell-Free Protein Synthesis Systems for Improved Biocatalysis and On-Demand, Cost-Effective Biosensors

Soltani Najafabadi, Mehran 06 August 2021 (has links)
The open nature of Cell-Free Protein Synthesis (CFPS) systems has enabled flexible design, easy manipulation, and novel applications of protein engineering in therapeutic production, biocatalysis, and biosensors. This dissertation reports on three advances in the application of CFPS systems for 1) improving biocatalysis performance in industrial applications by site-specific covalent enzyme immobilization, 2) expressing and optimizing a difficult to express a mammalian protein in bacterial-based CFPS systems and its application for cost-effective, on-demand biosensors compatible with human body fluids, and 3) streamlining the procedure of an E. coli extract with built-in compatibility with human body fluid biosensors. Site-specific covalent immobilization stabilizes enzymes and facilitates recovery and reuse of enzymes which improves the net profit margin of industrial enzymes. Yet, the suitability of a given site on the enzyme for immobilization remains a trial-and-error procedure. This dissertation reports the reliability of several design heuristics and a coarse-grain molecular simulation in predicting the optimum sites for covalent immobilization of a target enzyme, TEM-1 ?-lactamase. This work demonstrates that the design heuristics can successfully identify a subset of favorable locations for experimental validation. This approach highlights the advantages of combining coarse-grain simulation and high-throughput experimentation using CFPS to efficiently identify optimal enzyme immobilization sites. Additionally, this dissertation reports high-yield soluble expression of a difficult-to-express protein (murine RNase Inhibitor or m-RI) in E. coli-lysate-based CFPS. Several factors including reaction temperature, reaction time, redox potential, and presence of folding chaperones in CFPS reactions were altered to find suitable conditions for m-RI expression. m-RI with the highest activity and stability was used to develop a lyophilized CFPS biosensor in human body fluids which reduced the cost of biosensor test by ~90%. Moreover, an E. coli extract with RNase inhibition activity was developed and tested which further streamlines the production of CFPS biosensors compatible with human body fluids.

Page generated in 0.0888 seconds