• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strain-Promoted Alkyne-Nitrone Cycloadditions: Developing Bioorthogonal Labelling Strategies

MacKenzie, Douglas Allan January 2015 (has links)
Chemical transformations that join two molecular components together rapidly while remaining highly efficient and selective are valued for their elegant simplicity and effectiveness in a myriad of applications. By applying the principles of ‘click’ chemistry to biology, information about molecular interactions in vivo can therefore be gained from minimally perturbing bioorthogonal coupling reactions. Developing bioorthogonal ‘click’ reactions – reactions that do not cross-react with biological components – provides new ways to accurately study biological systems at the molecular level. This thesis describes the development of such tools. Strain-promoted alkyne-nitrone cycloadditions (SPANC) represent rapid, efficient, selective, and tunable conjugation strategies that are applicable to biomolecular labelling experiments. Herein, SPANC reactions with bicyclo[6.1.0]nonyne are examined using physical organic methods to determine the stereoelectronic factors governing SPANC reactivity. Second-order rate constants (k2) of up to 1.49 M-1s-1 were measured and the resulting cycloadditions are applied to the design and synthesis of nitrone-based molecular probes. The first example of SPANC-mediated metabolic labelling in live-cell bacteria is reported, establishing SPANC as an efficient and bioorthogonal metabolic labelling strategy for cellular labelling.
2

Metabolic labelling of bacterial isoprenoids produced by the methylerythritol phosphate pathway : a starting point towards a new inhibitor / Marquage métabolique des isoprénoïdes bactériens produits par la voie du méthylérythritol phosphate : un point de départ vers un nouvel inhibiteur

Baatarkhuu, Zoljargal 05 September 2017 (has links)
Les isoprénoïdes, présents dans tous les organismes vivants, sont synthétisés selon deux processus: la voie du Mevalonate et la voie Méthylérythritol phosphate (MEP). Cette dernière, absente chez l’humain, est très étudiée car elle représente une cible pour le développement de nouveaux antimicrobiens. Le ME-N3, un analogue du méthylérythritol portant un azoture, a été synthétisé et exploité dans des expériences de marquage métabolique de la voie MEP en utilisant un couplage bioorthogonale suivi d’une analyse par LC/MS. De façon intéressante, nous avons découvert que le MEP-N3, un analogue du MEP, inhibe l'enzyme IspD d’ E. coli (3ème enzyme de la voie MEP). Les études cinétiques ont révélé que le MEP-N3 possède la meilleure activité inhibitrice sur IspD d’ E.coli en comparaison avec les inhibiteurs connus, et que le mécanisme d'inhibition est de type mixte. Une étude détaillée du mécanisme de la réaction catalysée par IspD a été réalisée pour la première fois, en utilisant une analyse cinétique à deux substrats. / Isoprenoids, present in all living organisms, are synthesised according to two routes: the Mevalonate and the Methylerythritol phosphate (MEP) pathways. The MEP pathway, absent in humans, is extensively investigated as it is a target for the development of new antimicrobials. ME-N3 an azide tagged analogue of methylerythritol was synthesised and utilised for metabolic labelling studies of the MEP pathway using bioorthogonal ligation followed by LC-MS analysis. Interestingly, we found that MEP-N3, an analogue of MEP, inhibits E.coli IspD (3rd enzyme of the MEP pathway). Further inhibition kinetic studies revealed that MEP-N3 possesses the highest inhibitory activity on E.coli ispD when compared to known inhibitors. In addition, the mechanism of inhibition of E.coli ispD by MEP-N3 was found to be best described using a mixed type model. Moreover, determination of the IspD reaction mechanism has been carried out for the first time, by virtue of a bisubstrate steady state kinetic analysis.
3

From Probes to Cell Surface Labelling: Towards the Development of New Chemical Biology Compounds and Methods

Legault, Marc 29 June 2011 (has links)
Chemical biology encompasses the study and manipulation of biological system using chemistry, often by virtue of small molecules or unnatural amino acids. Much insight has been gained into the mechanisms of biological processes with regards to protein structure and function, metabolic processes and changes between healthy and diseased states. As an ever expanding field, developing new tools to interact with and impact biological systems is an extremely valuable goal. Herein, work is described towards the synthesis of a small library of heterocyclic-containing small molecules and the mechanistic details regarding the interesting and unexpected chemical compounds that arose; an alternative set of non-toxic copper catalyzed azide-alkyne click conditions for in vivo metabolic labelling; and the synthesis of an unnatural amino acid for further chemical modification via [3+2] cycloadditions with nitrones upon incorporation into a peptide of interest. Altogether, these projects strive to supplement pre-existing methodology for the synthesis of small molecule libraries and tools for metabolic labelling, and thus provide further small molecules for understanding biological systems.
4

From Probes to Cell Surface Labelling: Towards the Development of New Chemical Biology Compounds and Methods

Legault, Marc 29 June 2011 (has links)
Chemical biology encompasses the study and manipulation of biological system using chemistry, often by virtue of small molecules or unnatural amino acids. Much insight has been gained into the mechanisms of biological processes with regards to protein structure and function, metabolic processes and changes between healthy and diseased states. As an ever expanding field, developing new tools to interact with and impact biological systems is an extremely valuable goal. Herein, work is described towards the synthesis of a small library of heterocyclic-containing small molecules and the mechanistic details regarding the interesting and unexpected chemical compounds that arose; an alternative set of non-toxic copper catalyzed azide-alkyne click conditions for in vivo metabolic labelling; and the synthesis of an unnatural amino acid for further chemical modification via [3+2] cycloadditions with nitrones upon incorporation into a peptide of interest. Altogether, these projects strive to supplement pre-existing methodology for the synthesis of small molecule libraries and tools for metabolic labelling, and thus provide further small molecules for understanding biological systems.
5

From Probes to Cell Surface Labelling: Towards the Development of New Chemical Biology Compounds and Methods

Legault, Marc 29 June 2011 (has links)
Chemical biology encompasses the study and manipulation of biological system using chemistry, often by virtue of small molecules or unnatural amino acids. Much insight has been gained into the mechanisms of biological processes with regards to protein structure and function, metabolic processes and changes between healthy and diseased states. As an ever expanding field, developing new tools to interact with and impact biological systems is an extremely valuable goal. Herein, work is described towards the synthesis of a small library of heterocyclic-containing small molecules and the mechanistic details regarding the interesting and unexpected chemical compounds that arose; an alternative set of non-toxic copper catalyzed azide-alkyne click conditions for in vivo metabolic labelling; and the synthesis of an unnatural amino acid for further chemical modification via [3+2] cycloadditions with nitrones upon incorporation into a peptide of interest. Altogether, these projects strive to supplement pre-existing methodology for the synthesis of small molecule libraries and tools for metabolic labelling, and thus provide further small molecules for understanding biological systems.
6

From Probes to Cell Surface Labelling: Towards the Development of New Chemical Biology Compounds and Methods

Legault, Marc January 2011 (has links)
Chemical biology encompasses the study and manipulation of biological system using chemistry, often by virtue of small molecules or unnatural amino acids. Much insight has been gained into the mechanisms of biological processes with regards to protein structure and function, metabolic processes and changes between healthy and diseased states. As an ever expanding field, developing new tools to interact with and impact biological systems is an extremely valuable goal. Herein, work is described towards the synthesis of a small library of heterocyclic-containing small molecules and the mechanistic details regarding the interesting and unexpected chemical compounds that arose; an alternative set of non-toxic copper catalyzed azide-alkyne click conditions for in vivo metabolic labelling; and the synthesis of an unnatural amino acid for further chemical modification via [3+2] cycloadditions with nitrones upon incorporation into a peptide of interest. Altogether, these projects strive to supplement pre-existing methodology for the synthesis of small molecule libraries and tools for metabolic labelling, and thus provide further small molecules for understanding biological systems.
7

Elucidation of Inositol Polyphosphate Dephosphorylation Pathways using Stable-Isotope Labelling and NMR spectroscopy

Nguyen Trung, Minh 29 September 2023 (has links)
Inositolpolyphosphate (InsPs) bilden eine ubiquitäre Gruppe an hochphosphorylierten, intrazellulären Signalmolekülen in eukaryotischen Zellen. Trotz deren Beteiligung an unzähligen biologischen Prozessen bleibt die Detektion von InsPs (insb. einzelner Enantiomere) eine Herausforderung, da die momentan verfügbaren Analysemethoden immer noch limitiert sind. In der vorliegenden Arbeit wird die stabile Isotopenmarkierung von myo-Inositol (Ins) und InsPs in Kombination mit Kernspinresonanzspektroskopie (engl. Nuclear Magnetic Resonance spectroscopy, NMR) erkundet, um diese Lücke zu schließen. Die Abhängigkeit von NMR-Daten und chemischer Struktur erlaubte die Analyse komplexer Mixturen aus InsPs aus in vitro-Experimenten und biologischen Proben. Durch stereospezifische 13C-Markierung konnten sogar Enantiomere voneinander unterschieden werden. Mit Hilfe dieser Methode wurden mehrere InsP-Stoffwechselwege untersucht. Als Erstes wurde das menschliche, Phytase-artige Enzym MINPP1 (engl. Multiple Inositol Polyphosphate Phosphatase 1) detailliert in vitro und in lebenden Zellen charakterisiert. Dabei wurde ein bisher unbeschriebener InsP-Stoffwechselweg in menschlichen Zellen erstmals beschrieben. Als Zweites wurden InsP verdauende Bakterien aus der menschlichen Darmflora untersucht, sodass der Abbauweg von Inositolhexakisphosphat beleuchtet werden konnte. Als Drittes wurden DUSP-Enzyme (engl. Dual-Specificity Phosphatases) identifiziert und in vitro charakterisiert, die in der Lage sind, die Phosphoanhydrid-Bindung von Inositolpyrophosphaten (PP-InsPs) zu spalten. Die vorliegende Arbeit demonstriert, dass 13C-Markierung in Verbindung mit NMR ein mächtiges Werkzeug darstellt, um InsP-Stoffwechselvorgänge zu untersuchen. / Inositol polyphosphates (InsPs) comprise a ubiquitous group of densely phosphorylated intracellular messengers in eukaryotic cells. Despite their contributions to a myriad of biological processes the detection of InsPs remains challenging to this day, especially with regards to differentiating enantiomers, as the available analytical toolset is still limited. In this thesis the use of stable isotope labelling of myo-inositol (Ins) and InsPs is explored to address this shortcoming. Combining 13C-labelling and nuclear magnetic resonance spectroscopy (NMR) provides both enhanced sensitivity and makes use of NMR’s strong structure-data dependency. This enabled the deconvolution of complex mixtures of InsPs from in vitro experiments or biological samples. With stereo-specific 13C-labels InsP mixtures could be resolved to individual enantiomers. Using this technique several InsP metabolic pathways were examined. Firstly, the human phytase-like enzyme Multiple Inositol Polyphosphate Phosphatase (MINPP1) was characterized in depth in vitro and in living cells, establishing a hitherto undescribed inositol polyphosphate metabolic path in humans. Secondly, inositol phosphate digesting bacteria isolated from the human gut microbiome were investigated, shedding light on the metabolic fate of inositol hexakisphosphate in the digestive track. Thirdly, a set of Dual-Specificity Phosphatases (DUSPs) were identified to be able to hydrolyze the phosphoanhydride bond of inositol pyrophosphates (PP-InsPs) and characterized in vitro. The 13C-labelling approach of InsPs in junction with NMR represents a powerful tool for the study of inositol polyphosphate metabolism. In the thesis at hand, this method has facilitated our understanding of inositol polyphosphate pathways and it will be continuing doing so in the future in several biological contexts.
8

Cell Fate Decisions and Transcriptional Regulation in Single Cells at High Temporal Resolution

Neuschulz, Katrin Anika Elisabeth 03 June 2024 (has links)
RNA ist ein zentrales Molekül in der Zelle und essentiell für ihre Lebensfunktionen. Die durchschnittliche Halbwertszeit von RNA-Molekülen limitiert jedoch die zeitliche Auflösung herkömmlicher RNA-Sequenzierung, da geringe Änderungen im Transkriptom kaum zu erkennen sind, bis eine gewisse Anzahl an Molekülen akkumuliert. Durch metabolische Markierung von RNA (SLAMseq) kann die Auflösung deutlich erhöht werden. Hierfür werden der Probe markierte Nucleotide (4sU/4sUTP) zugesetzt, die dann zufällig in neu transkribierte RNA inkorporiert werden und eine Unterscheidung zwischen ‚neuer‘ und ‚alter‘ RNA erlauben. In dieser Arbeit werden eine der ersten Einzelzell-SLAMseq-Methoden, die dazugehörige Datenanalyse-Software sowie drei Anwendungen der entwickelten Methoden vorgestellt. Die erste Anwendung verwendet Einzelzell-SLAMseq, um zwischen maternaler (alter) und zygotischer (neuer) RNA in sich entwickelnden Zebrafischembryos bis zur Gastrulation zu unterscheiden. Im Rahmen des Projekts entstand der erste Einzelzell-SLAMseq-Datensatz in einem vollständigen Wirbeltier, der es außerdem erlaubt, im Vorfeld identifizierten lokalisierten maternalen Transkripten zeitlich zu folgen. Diese – vorher uncharakterisierten –Transkripte wurden während der Gastrulation in den Keimzellen angereichert gefunden, was Rückschlüsse auf ihre mögliche Funktion erlaubt. Die zweite Anwendung konzentriert sich auf die neu transkribierte RNA und verwendet (Einzelzell-)SLAMseq, um Transkripte, die in Reaktion auf Stress während der Probenaufbereitung hergestellt wurden, zu identifizieren und rechnerisch zu entfernen. Die Vorteile der Methode werden in mehreren Systemen und Geweben (Mausherz, Zebrafischlarve, Maus-Microglia) demonstriert. In der dritten Anwendung wird eine Machbarkeitsstudie für in vivo SLAMseq zur Identifikation der initialen Immunantwort nach Makrophagenstimulation präsentiert, die auf einen deutlichen Gewinn an zeitlicher Auflösung durch SLAMseq hindeutet. / RNA is a central molecule in the cell and essential to its life functions. With the average RNA half life being multiple hours, regular RNA sequencing has an intrinsic limit on temporal resolution, where small changes in the transcriptome are not picked up until a certain amount of transcripts has build up. This resolution can be greatly improved using RNA metabolic labelling (SLAMseq), where labelled nucleotides (4sU/4sUTP) are added to the samples. These nucleotides are randomly incorporated into nascent transcripts and allow distinction between RNA produced before and after introduction of the labelling agent. This thesis presents one of the first high throughput single cell SLAMseq protocols, an accompanying computational pipeline for data analysis as well as three applications for the developed methods. The first application uses single cell SLAMseq to distinguish between maternal (unlabelled) and zygotic (labelled) transcripts in early zebrafish development (up to mid-gastrulation). This project generated the first single cell SLAMseq dataset in a whole vertebrate. Additionally the data allows to follow a previously discovered set of vegetally localised maternal transcripts in time and determine that these specific transcripts are mainly enriched in the primordial germ cells at gastrulation, therefore ascribing a potential function to a set of so far uncharacterised genes. The second application focuses on newly transcribed RNA and uses (single cell) SLAMseq as a technique to identify and remove transcripts generated in response to sample preparation stress. The method’s benefits are demonstrated in multiple systems and tissues, among them mouse cardiomyocytes, zebrafish larvae and mouse microglia. Finally as the third application an in vivo proof of concept study of SLAMseq to identify first response genes in macrophage stimulation is presented, where the introduction of 4sU shows clear advantages in temporal resolution compared to unlabelled data.

Page generated in 0.1288 seconds