Spelling suggestions: "subject:"dualspecificity phosphatase"" "subject:"unspecificity phosphatase""
1 |
An investigation of the oncogenic potential and function of the dual specificity phosphatase 12Cain, Erica L. January 1900 (has links)
Doctor of Philosophy / Department of Biology / Alexander Beeser / Large-scale genomic approaches have demonstrated many atypical dual specificity
phosphatases (DUSPs) are differentially expressed or mutated in cancer. DUSPs are proteins
predicted to have the ability to dephosphorylate Ser/Thr and Tyr residues, and the atypical DUSP
subgroup contains at least 16 members with diverse substrates that include proteins, nucleic
acids, and sugars, and some of the atypical DUSPs function in the cell not as phosphatases but as
scaffolds in signal transduction pathways. Of the atypical DUSPs, DUSP12 is one of the most
evolutionarily conserved with homologs found in organisms ranging from yeast to humans.
DUSP12 is of particular interest as it has been identified to be one of only two candidate genes
for the target of a genetic amplification found in liposarcomas. Furthermore, DUSP12 may be an
oncogene in that over-expression of dusp12 in cell culture promotes apoptosis resistance, cell
motility, and the up-regulation of two established oncogenes, the hepatocyte growth factor
receptor (c-met) and integrin alpha 1 (itga1). Additionally, DUSP12 may protect from apoptosis
by functioning as a regulator of stress-induced translation repression and stress granule formation
that may be due to its interaction with the DEAD Box RNA Helicase, DDX3.
|
2 |
The phosphatase MKP1 as a target to enhance replicative stress and apoptosis in tumor cellsJagannathan, Veena 06 May 2015 (has links)
No description available.
|
3 |
The role of MKP-1 in autophagy, apoptosis and necrosis during ischaemia/reperfusion injury in the heartVermeulen, Michelle 12 1900 (has links)
Thesis MSc (Physiological Sciences))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Ischaemic heart disease is a leading cause of death worldwide and is also
largely contributing to deaths in Africa. Better treatment or even prevention of
ischaemia/reperfusion injury in the heart, necessitates a better understanding
of the molecular pathways and mechanisms of cell death. Three types of cell
death can occur in the diseased myocardium. Type I, better known as
apoptotic cell death, is characterised by cell shrinkage and chromatin
condensation, type II, known as autophagic cell death, is characterised by
intracellular accumulation of double membranes vacuoles and type III,
necrotic cell death, is characterised by cellular swelling and loss of
membrane integrity. Many signaling pathways are activated during
ischaemia/reperfusion injury which include the mitogen activated protein
kinases (MAPKs), such as extracellular signal-regulated protein kinase
(ERK), c-Jun NH2-terminal protein kinase (JNK) and p38 MAPK. These
kinases are dephosphorylated by appropriate phosphatases. MAPK
phosphatase-1 (MKP-1), a dual specificity phosphatase, inactivates the
MAPKs by dephosphorylating specific Thr/Tyr residues. Upregulation of
MKP-1 during ischaemia/reperfusion injury has been shown to be
cardioprotective, however no knowledge regarding a role of MKP-1 in
autophagy exists. Therefore the aim of this study is to investigate the role of
MKP-1 in autophagy, apoptosis and necrosis during simulated
ischaemia/reperfusion injury in the heart.METHOD: H9C2 cells (rat cardiomyocytes) were cultured under standard conditions.
Upon reaching 75-80% confluency, cells were treated for 30 min during
normoxic conditions with dexamethasone, to induce MKP-1 expression, or
sanguinarine, to inhibit MKP-1 induction. Thereafter, they were exposed to 3
hrs simulated ischaemia (induced by an ischaemic buffer and 5% CO2/1%
O2) in the presence of the above mentioned treatments. Cells were then
allowed to reperfuse for 30 min in the presence of dexamethasone or
sanguinarine. Samples were analysed after simulated ischaemia and after
reperfusion. Cell viability was measured by MTT assay. Propidium iodide and
Hoechst staining were used to assess morphological markers of apoptosis
and necrosis. LDH release during reperfusion was assessed as indicator of
necrotic cell death. LysoTracker®Red was used to visualise the autophagic
flux occurring during ischaemia/reperfusion in the cell. Flow cytometry was
used to quantify cells stained with acridine orange as indicator for autophagy.
Autophagic and apoptotic protein markers as well as MAPK and MKP-1
activity were analysed by Western Blotting. RESULTS: Our results indicate a clear relationship between MKP-1 induction,
autophagy and cell survival during simulated ischaemia/reperfusion (SI/R).
MKP-1 inhibition during SI/R resulted in decreased autophagy activity
accompanied by significant apoptotic and necrotic cell death. Increased MKP-1 induction, on the other hand, during SI/R resulted in increased levels
of autophagy activity and subsequent attenuation of apoptotic and necrotic
cell death. p38 MAPK phosphorylation was significantly higher while MKP-1
was inhibited and significantly lower while MKP-1 was induced. This strongly
indicates that upregulation of MKP-1, known to attenuate
ischaemia/reperfusion injury, has an important role in cell survival during
ischaemia/reperfusion injury in the heart, through its involvement in the
regulation of autophagic activity as a stress response against apoptotic or
necrotic cell death. / AFRIKAANSE OPSOMMING: Iskemiese hartsiekte is een van die grootste oorsake van sterftes wêreldwyd
en dra ook beduidend by tot sterftes in Afrika. Om iskemiese hartsiektes te
behandel of selfs te voorkom, is 'n goeie begrip van die molekulêre paaie wat
betrokke is tydens iskemie/herperfusie, noodsaaklik. Drie tipes seldood kom
tydens patologiese toestande in die hart voor. Tipe I, ook bekend as
apoptotiese seldood, word gekenmerk deur selkrimping en kromatien
kondensasie, tipe II, ook bekend as autofagiese seldood word gekenmerk
deur intrasellulêre opeenhoping van dubbelmembraan vakuole en tipe III,
bekend as nekrotiese seldood, word deur sellulêre swelling en verlies van
membraan integriteit gekenmerk. Iskemie/herperfusie lei tot die aktivering
van seintransduksiepaaie wat die MAPKs, soos p38, ERK en JNK insluit.
Hierdie kinases word deur die gepaste fosfatases gedefosforileer. MKP-1, 'n
dubbele spesifieke fosfatase, deaktiveer MAPKs deur hul Thr/Tyr eenhede te
defosforileer. Alhoewel daar al voorheen getoon is dat verhoogte MKP-1 ‘n
beskermende funksie in die hart tydens iskemie/herperfusie het, is daar nog
geen bewyse vir ‘n rol van MKP-1 tydens autofagie nie. Die doel van hierdie
studie is dus om die rol van MKP-1 in autofagie, apoptose en nekrose te
ondersoek tydens gesimuleerde iskemie/herperfusie in die hart. METODE: H9C2 selle (rot ventrikulêre hartselle) is onder standaard toestande
gekweek. Wanneer die selle 75-80% konfluensie bereik het, is dit behandel
met dexamethasone of sanguinarine onder standaard toestande vir 30 min.
Daarna is selle blootgestel aan 3 ure iskemie, in die teenwoordigheid van
dexamethasone of sanguinarine. Selle is dan toegelaat om vir 30 min te
herperfuseer, weer in die teenwoordigheid van dexamethasone of
sanguinarine. Monsters is na iskemie en herperfusie geneem vir analise.
Selvatbaarheid is gekwantifiseer deur ‘n MTT bepaling. Morfologiese
merkers van seldood is bepaal met behulp van propidium iodide en Hoechst
kleuringsmetodes. Laktaatdehidrogenase (LDH) vrystelling tydens
herperfusie is as merker van nekrose gebruik. Autofagie is gevisualiseer
deur gebruik te maak van LysoTracker®Red kleuring tydens iskemie en
herperfusie. Akridienoranje is gebruik om suur kompartemente te kleur.
Vloeisitometrie is as kwantifiseringstegniek vir autofagie gebruik. Western
Blotting is gebruik om uitdrukking van merkerproteïene van autofagie en
apoptose sowel as MAPK en MKP-1 aktiwiteit tydens iskemie/reperfisie te
bepaal. RESULTATE: Ons resultate toon ‘n verband tussen MKP-1 induksie, autofagie en
seloorlewing gedurende gesimuleerde iskemie/herperfusie (SI/R) aan. MKP-
1 inhibisie gedurende SI/R het tot ‘n afname in autofagie gelei tesame met ‘n beduidende toename in apoptotiese en nekrotiese seldood. Verhoogde
MKP-1 induksie gedurende SI/R, daarteenoor, het autofagiese aktiwiteit
verhoog, gepaardgaande met ‘n verlaging in apoptose en nekrose. p38
MAPK fosforilasie was beduidend hoër tydens MKP-1 inhibisie en laer met
MKP-1 induksie. Hierdie resultate toon dat MKP-1 ‘n belangrike rol in
seloorlewing speel tydens iskemie/herperfusiesskade in die hart, deur sy
deelname in die regulering van autofagiese aktiwiteit as ‘n stres reaksie teen
apoptotiese en nekrotiese seldood.
|
4 |
Pharmacological targeting of the mitochondrial phosphatase PTPMT1.Doughty-Shenton, D, Joseph, JD, Zhang, J, Pagliarini, DJ, Kim, Y, Lu, D, Dixon, JE, Casey, PJ 05 1900 (has links)
The dual-specificity protein tyrosine phosphatases (PTPs) play integral roles in the regulation of cell signaling. There is a need for new tools to study these phosphatases, and the identification of inhibitors potentially affords not only new means for their study, but also possible therapeutics for the treatment of diseases caused by their dysregulation. However, the identification of selective inhibitors of the protein phosphatases has proven somewhat difficult. PTP localized to mitochondrion 1 (PTPMT1) is a recently discovered dual-specificity phosphatase that has been implicated in the regulation of insulin secretion. Screening of a commercially available small-molecule library yielded alexidine dihydrochloride, a dibiguanide compound, as an effective and selective inhibitor of PTPMT1 with an in vitro concentration that inhibits response by 50% of 1.08 microM. A related dibiguanide analog, chlorhexidine dihydrochloride, also significantly inhibited PTPMT1, albeit with lower potency, while a monobiguanide analog showed very weak inhibition. Treatment of isolated rat pancreatic islets with alexidine dihydrochloride resulted in a dose-dependent increase in insulin secretion, whereas treatment of a pancreatic beta-cell line with the drug affected the phosphorylation of mitochondrial proteins in a manner similar to genetic inhibition of PTPMT1. Furthermore, knockdown of PTPMT1 in rat islets rendered them insensitive to alexidine dihydrochloride treatment, providing evidence for mechanism-based activity of the inhibitor. Taken together, these studies establish alexidine dihydrochloride as an effective inhibitor of PTPMT1, both in vitro and in cells, and support the notion that PTPMT1 could serve as a pharmacological target in the treatment of type II diabetes. / Dissertation
|
5 |
Molecular and Cellular Mechanisms Leading to Similar Phenotypes in Down and Fetal Alcohol SyndromesSolzak, Jeffrey Peter 22 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Down syndrome (DS) and Fetal Alcohol Syndrome (FAS) are two leading causes of birth defects with phenotypes ranging from cognitive impairment to craniofacial abnormalities. While DS originates from the trisomy of human chromosome 21 and FAS from prenatal alcohol consumption, many of the defining characteristics for these two disorders are stunningly similar. A survey of the literature revealed over 20 similar craniofacial and structural deficits in both human and mouse models of DS and FAS. We hypothesized that the similar phenotypes observed are caused by disruptions in common molecular or cellular pathways during development. To test our hypothesis, we examined morphometric, genetic, and cellular phenotypes during development of our DS and FAS mouse models at embryonic days 9.5-10.5. Our preliminary evidence indicates that during early development, dysregulation of Dyrk1a and Rcan1, cardinal genes affecting craniofacial and neurological precursors of DS, are also dysregulated in embryonic FAS models. Furthermore, Caspase 3 was also found to have similar expression in DS and FAS craniofacial neural crest derived tissues such as the first branchial arch (BA1) and regions of the brain. This may explain a developmental deficit by means of apoptosis. We have also investigated the expression of pAkt, a protein shown to be affected in FAS models, in cells located within the craniofacial precursor of Ts65Dn. Recent research shows that Ttc3, a gene that is triplicated and shown to be overexpressed in the BA1 and neural tube of Ts65Dn, targets pAkt in the nucleus affecting important transcription factors regulating cell cycle and cell survival. While Akt has been shown to play a role in neuronal development, we hypothesize that it also affects similar cellular properties in craniofacial precursors during development. By comparing common genotypes and phenotypes of DS and FAS we may provide common mechanisms to target for potential treatments of both disorders.
One of the least understood phenotypes of DS is their deficient immune system. Many individuals with DS have varying serious illnesses ranging from coeliac disease to respiratory infections that are a direct result of this immunodeficiency. Proteasomes are an integral part of a competent and efficient immune system. It has been observed that mice lacking immunoproteasomes present deficiencies in providing MHC class I peptides, proteins essential in identifying infections. A gene, Psmg1 (Dscr2), triplicated in both humans and in Ts65Dn mice, is known to act as a proteasome assembly chaperone for the 20S proteasome. We hypothesized that a dysregulation in this gene promotes a proteasome assembly aberration, impacting the efficiency of the DS immune system. To test this hypothesis we performed western blot analysis on specific precursor and processed β-subunits of the 20S proteasome in thymic tissue of adult Ts65Dn. While the β-subunits tested displayed no significant differences between trisomic and euploid mice we have provided further insight to the origins of immunodeficiency in DS.
|
6 |
Elucidation of Inositol Polyphosphate Dephosphorylation Pathways using Stable-Isotope Labelling and NMR spectroscopyNguyen Trung, Minh 29 September 2023 (has links)
Inositolpolyphosphate (InsPs) bilden eine ubiquitäre Gruppe an hochphosphorylierten, intrazellulären Signalmolekülen in eukaryotischen Zellen. Trotz deren Beteiligung an unzähligen biologischen Prozessen bleibt die Detektion von InsPs (insb. einzelner Enantiomere) eine Herausforderung, da die momentan verfügbaren Analysemethoden immer noch limitiert sind. In der vorliegenden Arbeit wird die stabile Isotopenmarkierung von myo-Inositol (Ins) und InsPs in Kombination mit Kernspinresonanzspektroskopie (engl. Nuclear Magnetic Resonance spectroscopy, NMR) erkundet, um diese Lücke zu schließen. Die Abhängigkeit von NMR-Daten und chemischer Struktur erlaubte die Analyse komplexer Mixturen aus InsPs aus in vitro-Experimenten und biologischen Proben. Durch stereospezifische 13C-Markierung konnten sogar Enantiomere voneinander unterschieden werden. Mit Hilfe dieser Methode wurden mehrere InsP-Stoffwechselwege untersucht. Als Erstes wurde das menschliche, Phytase-artige Enzym MINPP1 (engl. Multiple Inositol Polyphosphate Phosphatase 1) detailliert in vitro und in lebenden Zellen charakterisiert. Dabei wurde ein bisher unbeschriebener InsP-Stoffwechselweg in menschlichen Zellen erstmals beschrieben. Als Zweites wurden InsP verdauende Bakterien aus der menschlichen Darmflora untersucht, sodass der Abbauweg von Inositolhexakisphosphat beleuchtet werden konnte. Als Drittes wurden DUSP-Enzyme (engl. Dual-Specificity Phosphatases) identifiziert und in vitro charakterisiert, die in der Lage sind, die Phosphoanhydrid-Bindung von Inositolpyrophosphaten (PP-InsPs) zu spalten. Die vorliegende Arbeit demonstriert, dass 13C-Markierung in Verbindung mit NMR ein mächtiges Werkzeug darstellt, um InsP-Stoffwechselvorgänge zu untersuchen. / Inositol polyphosphates (InsPs) comprise a ubiquitous group of densely phosphorylated intracellular messengers in eukaryotic cells. Despite their contributions to a myriad of biological processes the detection of InsPs remains challenging to this day, especially with regards to differentiating enantiomers, as the available analytical toolset is still limited. In this thesis the use of stable isotope labelling of myo-inositol (Ins) and InsPs is explored to address this shortcoming. Combining 13C-labelling and nuclear magnetic resonance spectroscopy (NMR) provides both enhanced sensitivity and makes use of NMR’s strong structure-data dependency. This enabled the deconvolution of complex mixtures of InsPs from in vitro experiments or biological samples. With stereo-specific 13C-labels InsP mixtures could be resolved to individual enantiomers. Using this technique several InsP metabolic pathways were examined. Firstly, the human phytase-like enzyme Multiple Inositol Polyphosphate Phosphatase (MINPP1) was characterized in depth in vitro and in living cells, establishing a hitherto undescribed inositol polyphosphate metabolic path in humans. Secondly, inositol phosphate digesting bacteria isolated from the human gut microbiome were investigated, shedding light on the metabolic fate of inositol hexakisphosphate in the digestive track. Thirdly, a set of Dual-Specificity Phosphatases (DUSPs) were identified to be able to hydrolyze the phosphoanhydride bond of inositol pyrophosphates (PP-InsPs) and characterized in vitro. The 13C-labelling approach of InsPs in junction with NMR represents a powerful tool for the study of inositol polyphosphate metabolism. In the thesis at hand, this method has facilitated our understanding of inositol polyphosphate pathways and it will be continuing doing so in the future in several biological contexts.
|
Page generated in 0.0741 seconds