• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemoenzymatic Synthesis of UDP-GlcNAc and UDP-GalNAc Derivatives for Chemoenzymatic Labeling

Zheng, Yuan 03 May 2017 (has links)
Glycans are macromolecules that contain several classes. Glycans can play an important role in biological activities. Studying the cell surface glycans can provide a very powerful way to understand the fundamental process. Also it could help to regulate expected cell response. Thus it is very necessary to have a method to detect cell- surface glycans efficiently. An efficient method for glycan detection is necessary. Metabolic glycan labeling and chemoenzymatic glycan labeling are most commonly used. Chemoenzymatic glycan labeling is a rapid and sensitive method which also has high specificity. This method can be applied in both vitro and vivo. However the availability of unnatural sugar nucleotides functioned by bioorthogonal groups is the main limitation for chemoenzymatic labeling. In this thesis, UDP-GlcNAc and UDP-GalNAc derivatives were prepared for further chemoenzymatic labeling by using chemoenzymatic synthesis method.
2

Analyse des Interaktoms des Mediatorkomplexes und seiner posttranslationalen Modifikationen in \(Saccharomyces\) \(Cerevisae\) mittels Massenspektrometrie / Proteomic Analysis of the Mediator Complex Interactome and it´s posttranslational Modifications in \(Saccharomyces\) \(Cerevisae\)

Uthe, Henriette January 2018 (has links) (PDF)
Eukaryotic messenger RNA (mRNA) synthesis catalyzed by the RNA Polymerase II is the central and critical process for the regulation of gene expression. Several decades of research unearthed many details about this essential process of high complexity and dynamic. The mediator complex turned out to be crucial for the regulation of Pol II mediated transcription, especially the process of initiation. It functions as an interface between the general transcription machinery and multiple DNA binding transcriptional regulators. Binding these regulators via its tail module and binding the polymerase II via its head module, the mediator forms a bridge between upstream activating sequences and the core promotor and initiates the assembling of the Pre-Initiation complex consisting of the polymerase II and the general transcription factors. However, particularly the last years of research suggest the mediator complex within many other functions including transcription elongation, gene looping and chromatin remodeling. Considering the facts, that the mediator (a) consist of 25 subunits, which are partially flexible associated, (b) shows a flexible intrinsic structure and (c) is highly and dynamically phosphorylated it becomes easy to imagineplausible that the mediator complex meets all this functions, by serving as a transcriptional platform. In context of this thesis, and it was possible to “illustrate” the mediator within its versatile tasks and functions by presenting the most comprehensive analysis of the Mediator complex interactome to date. By optimizing the conditions of cell lysis and co-immunoprecipitation it was possible to preserve even transient and labile protein-protein interactions. The use of metabolic labeling (15N) in the control experiment, allowed us to distinguish between specific and non-specific captured proteins. In combination with high performance mass spectrometry, more than 400 proteins and even complete protein complexes interacting with the mediator complex could be identified, naming RNA-Polymerase II, all general transcription factors the SAGA complex, chromatin remodeling complexes and highly acetylated histones. Furthermore, many candidates where identified playing a role in co-transcriptional processes of mRNA, such as splicing, mRNA-decapping, mRNA transport and decay. This analysis not only confirmed several interactions , already can be found in the literature, but furthermore provide clear evidence, that mediator complex interacts not only with the RNA-Polymerase II, but also with the RNA Polymerase I and III. Next to the high numbers of potential known and unknown interacting proteins, it could be shown, that the interactome is highly dynamic and sensitive to detergent. / Die Synthese der mRNA durch die RNA-Polymerase II ist der zentrale und kritische Prozess im Rahmen der Transkriptionsregulation Protein-kodierender Gene. Viele Jahrzehnte der intensiven Erforschung brachten viele Details über diesen Mechanismus zu Tage, der von einer unglaublichen Komplexität und Dynamik geprägt ist. Dabei stellte sich heraus, dass der Mediatorkomplex eine zentrale Rolle bei der Regulation der Polymerase II-abhängigen Transkription spielt, im Besonderen der Initiation. In der Funktion einer Schnittstelle verknüpft er die allgemeine Transkriptionsmaschinerie mit den Gen- spezifischen Transkriptionsregulatoren. Durch die Interaktion des Schwanzmoduls mit diesen Regulatoren und der Interaktion des Kopfmoduls mit der Polymerase II verbindet er wie eine Brücke die oberhalb des Promotors liegenden Aktivatorsequenzen mit dem Kernpromotor und initiiert so die Ausbildung des Pre-Initiationskomplexes. Darüber hinaus mehren sich gerade in den letzten Jahren die Hinweise darauf, dass der Mediator auch noch an anderen Prozessen der Transkription beteiligt ist. Zu diesen gehören z.B. die Elongation, die Ausbildung von Genschlaufen oder auch der Umbau der Chromatinstruktur. In Anbetracht der Tatsachen, dass der Mediator (a) aus bis zu 25 Untereinheiten mit flexibler Zusammensetzung besteht, (b) eine flexible Struktur besitzt und (c) umfassend und dynamisch über posttranslationale Modifikationen modifiziert ist, erscheint es durchaus möglich, dass der Mediator all diese Funktionen ausfüllt und die Rolle einer allgemeinen Transkriptionsplattform einnimmt. Im Zusammenhang mit dieser Dissertationsschrift ist es gelungen, den Mediator innerhalb all dieser Funktionen „abzubilden“ und die bisher umfassendste Interaktomanalyse dieses Komplexes zu präsentieren. Durch die optimierten Bedingungen der Zelllyse und Co-Immunopräzipitation, gelang es auch transiente Interaktionspartner zu isolieren. Durch das metabolische Markieren der Wildtypkontrolle konnten außerdem unspezifische und spezifische Interaktionen eindeutig voneinander unterschieden werden. Über 400 Proteine wurden als signifikante Interaktionspartner des Mediators identifiziert. Viele dieser Proteine konnten als vollständige Komplexe zusammengefasst werden, z.B die RNA-Polymerase II, alle allgemeinen Transkriptionsfaktoren, der SAGA-Komplex, viele Komplexe des Chromatin Remodelings und stark acetylierte Histone. Viele weitere Interaktionspartner spielen zudem eine Rolle bei der co-transkriptionalen Prozessierung der mRNA, wie z.B dem Splicing, dem mRNA-decapping oder Abbau. Darüber hinaus gibt es starke Hinweise darauf, dass der Mediator auch mit der Polymerase I und III interagiert und an der ribosomalen Biogenese beteiligt ist. Weitere Analysen zeigten, dass das Interaktom zudem hochdynamisch ist
3

Etudes structurales par RMN des profils Saccharidiques d'Héparanes sulfates et de leur régulation cellulaire : Mise en place d'un protocole de marquage, de purification et d'analyse de chaines entières / Structural studies of heparan sulfate profiles and their cellular regulation by nmr : set up of a labeling and purification protocol for full-length chains analysis

Pegeot, Mathieu 11 December 2014 (has links)
Les glycosaminoglycanes (GAG) forment une famille de polysaccharides linéaires retrouvés dans tous les tissus, au niveau des matrices extracellulaires et des surfaces cellulaires. Les héparanes sulfates (HS) sont des membres importants de cette famille et sont liés à une protéine dite cœur pour former ensemble le protéoglycane (PG). Selon le tissu et la nature de la protéine cœur, les HS, composés d'unités disaccharidiques de N-acétylglucosamine (GlcNAc) et d'acide glucuronique (GlcA) [-4GlcAβ1-4GlcNAcα1-] vont subir de nombreuses modifications. En effet, les HS sont modifiés par différentes sulfatations au niveau des deux oses et une épimérisation de l'acide glucuronique en acide iduronique (IdoA). Les différentes structures saccharidiques élaborées vont pouvoir être alors interagir avec une très grande quantité de protéines et jouer des rôles divers dans l'inflammation, la prolifération cellulaire, l'angiogenèse, la réponse immunitaire, l'attachement viral…L'étude de la structure des HS, du fait de la nature flexible et hétérogène de ces molécules, a été principalement focalisée sur des analyses fragmentaires du polysaccharide au niveau des séquences d'interaction avec les protéines. Lors de ces dépolymérisations, des informations sur le polysaccharide, notamment l'épimérisation, sont perdues.Dans ce travail, nous avons développé une approche basée sur la résonance magnétique nucléaire (RMN) bidimensionnelle 1H-13C pour l'étude de la composition saccharidique des HS réalisée directement à partir des HS isolés de cellules marquées au 13C. Pour cela, un protocole efficace de marquage et de purification des polysaccharides a été mis en place. En intégrant le volume des pics à différents déplacements chimiques par RMN, cette analyse non-destructive permet de déterminer à la fois le profil de sulfatation et d'épimérisation des HS. Cette analyse est appliquée efficacement à différents types cellulaires et est de grand intérêt pour mieux comprendre les changements dans les structures d'HS qui ont lieu lors de régulations physiologiques ou lors de développement pathologiques.Ces résultats ont permis d'ouvrir la voie à l'analyse des HS directement au niveau des cellules par RMN du solide. Les études dans ce contexte représentent un enjeu majeur pour la compréhension des différents rôles des HS et leur capacité à interagir avec une myriade de protéines in vivo. / Glycosaminoglycans (GAGs) belong to a linear polysaccharide family which are found within all tissues, at the extracellular matrix and cell surfaces levels. Heparan Sulfates (HS) are one of the major members of this family, they are bound to a core protein to form altogether the so-called proteoglycan (PG). Depending on the localization and on the core protein, the HS – composed of a N-acetylglucosamine (GlcNAc) and a glucuronic acid (GlcA) [-4GlcAβ1-4GlcNAcα1-] building block – undergo various modifications. Indeed, HS can be sulfated at different positions on both monosaccharide and the GlcA can be epimerized into an iduronic acid (IdoA). The fine structures of the polysaccharide will be able to interact with a large range of proteins and play a plethora of roles such as in inflammation processes, cell proliferation, angiogenesis, immune responses, viral attachment…The HS structural studies, due to the flexibility and heterogeneity of the polysaccharide, have so far been restricted to HS fragments able to bind proteins. The depolymerization techniques induce valuable information losses such as epimerization.In this work, we have successfully developed a nuclear magnetic resonance (NMR)-based approach to study HS features from 13C metabolically enriched cells. For this, an effective protocol to label and purify HS has been set up. By integrating peaks' volumes at well-resolved 1H-13C chemical shifts by NMR, the sulfation, epimerization and disaccharide profile can be determined from full-length HS. This method has been used to study HS from various cell types and is of important interest to better understand changes in HS structures that occur through physiologic and pathologic events.The results obtained open the way to analyze HS directly at the cell surface via solid state NMR techniques. In this context, these studies are a major challenge to decipher the different roles of HS and their ability to interact with so many partners in vivo.
4

Marquage métabolique de glycanes : diagnostic et approches thérapeutiques / Metabolic labeling of glycans : diagnostic and therapeutic approaches

Fourmois, Laura 11 October 2016 (has links)
Cette thèse porte sur la méthode de marquage métabolique de glycanes. Elle consiste à utiliser des monosaccharides modifiés pouvant être métaboliquement introduits sur la membrane externe des cellules. Deux cibles ont été choisies, les bactéries Legionella pneumophila, et des cellules eucaryotes (lignée cellulaire du cancer de la prostate, PC3).Différents analogues saccharidiques ont été synthétisés pour les deux cibles portant différents rapporteurs chimiques, notamment des fonctions azoture, alcyne terminal, alcène terminal, cyclopropène et cétone. Une voie de synthèse commune a été développée mettant en jeu des dérivés d’esters de N-hydrosuccinimide et des dérivés saccharidiques amino, tels que la D-mannosamine, la D-galactosamine et le L-fucose pour les cellules eucaryotes et des analogues d’un précurseur de l’acide légionaminique pour les bactéries Legionella pneumophila.Des essais de marquages métaboliques de glycanes ont été effectués sur Legionella pneumophila. Pour cela, différents dérivés saccharidiques ont été incorporés par les bactéries, puis la révélation des rapporteurs chimiques avec des groupements complémentaires a été évaluée (azoture-cyclooctyne, alcène-tétrazine, cétone-hydrazide/alkoxyamine). La détection a été réalisée soit directement (fluorophore sur le partenaire), soit indirectement (reconnaissance d’un groupement biotine par une streptavidine portant un fluorophore). Les bactéries ont été ensuite observées par microscopie photonique et les observations ont mis en évidence un marquage membranaire.Pour les cellules eucaryotes (PC3), des essais de marquage métabolique ont été effectués afin de vérifier l’incorporation des monosaccharides modifiés via une détection par fluorescence. Une série d’outils portant les fonctions complémentaires aux rapporteurs chimiques, notamment un dérivé de cyclooctyne (TMDIBO) et un dérivé de tétrazine ont été synthétisés. Ils ont été couplés à des dérivés de biotine afin d’obtenir des outils pour la microscopie photonique et à des ARMs (Antibody Recruiting Molecules), tel que le 2,4-dinitrophényle et le rhamnose, en vue d’une potentielle approche thérapeutique. Celle-ci consiste à combiner l’incorporation de monosaccharides modifiés et leur réaction avec un partenaire portant des ARMs, afin de recouvrir la surface des cellules par ces motifs. Les ARMs en présence de sérum humain vont ensuite activer le complément conduisant à la lyse des cellules marquées. Des tests de marquage métabolique ont été réalisés avec les outils couplés aux ARMs et une détection par fluorescence a permis de vérifier la présence des ARMs à la surface des cellules. Des premiers essais ont été effectués avec du sérum humain et des optimisations sont à réaliser.Le marquage métabolique de glycanes est une méthode efficace afin de détecter par fluorescence les bactéries Legionella pneumophila à l’aide d’analogues d’un précurseur de l’acide légionaminique et les cellules eucaryotes PC3 via des dérivés d’autres monosaccharidiques. Le marquage obtenu dans les deux cas est membranaire. Cette méthode permet éventuellement de combiner des aspects d’imagerie ou de diagnostic, avec différentes approches thérapeutiques. / This PhD work focuses on glycans metabolic labeling. This method uses a modified monosaccharides bearing a chemical reporter. The unnatural monosaccharide is metabolically incorporated into glycans. Two targets were selected, Legionella pneumophila bacteria and prostate cancer cells (PC3).Various saccharidic analogs were synthesized carrying several chemical reporters, like azide, terminal alkyne, terminal alkene, cyclopropene and ketone functions. A common synthetic strategy was developed using N-hydrosuccinimide ester derivatives and amino monosaccharides, such as D-mannosamine, D-galactosamine and L-fucose for eukaryotic cells and analogs of a legionaminic acid precursor for Legionella pneumophila bacteria.Differents metabolic labeling of glycans were carried out on Legionella pneumophila. Various sugar derivatives were incorporated by bacteria, then the reporter group was reacted selectively and covalently with a complementary function (azide-cyclooctyne, alkene-tetrazine, ketone-hydrazide/alkoxyamine). Bacteria were visualized with an imaging probes by light microscopy (directly: partner bearing a fluorophore, indirectly: recognition of a biotin group by a fluorescent streptavidin). The results highlighted outer membrane labeling.For eukaryotic cells (PC3), metabolic oligosaccharides engineering has been accomplished to check chemical reporter analogs incorporation via detection with fluorescent probes. A series of tools carrying functions complementary to the chemical reporters was synthesized, such as cyclooctyne derivatives (TMDIBO) and tetrazine derivatives. These derivatives were combined with biotin groups for detecting tools or with Antibody Recruiting Molecules (ARMs), such as 2,4-dinitrophenyl and L-rhamnose, for potential therapeutic approaches. The concept focuses on the combination of metabolic glycan labeling and the activation of human serum complement by ARMs to kill selectively labeled cells. First, ARMs labeled cells was checked by recognition of fluorescent anti-ARMs antibodies. Then, metabolic glycan labeling and human serum complement activation has been evaluated but the complement activation protocols still need to be optimized.Metabolic labeling of glycans is an effective method to detect, by fluorescence, Legionella pneumophila bacteria using analogs of a legionaminic acid precursor and eukaryotic cells (PC3) with monosaccharide derivatives. The labeling was observed on the membrane of the two targets. This method can potentially combine imaging or diagnostic aspects with various therapeutic approaches.
5

Synthèse d’outils pour le marquage métabolique des glycanes. / Synthesis of tools for the metabolic labeling of glycans.

Carlier, Mathieu 22 November 2019 (has links)
Les glycanes sont des biomolécules constituées d’un enchainement de monosaccharides liés entre eux par des liaisons glycosidiques. La nature et l’abondance des monosaccharides constituant la chaine glycanique ainsi que l’agencement des motifs de glycosylation diffèrent fortement en fonction de l’organisme d’origine. La biosynthèse et la dégradation de ces architectures polysaccharidiques sont finement régulées par des systèmes enzymatiques spécifiques et sont organisées au sein des divers compartiments cellulaires. Les glycanes interviennent dans divers processus biologiques : réserves énergétiques, repliement et stabilité protéique, reconnaissance cellulaire et adhésion à la matrice extracellulaire.Cette thèse porte sur la synthèse et l’utilisation de composés permettant le marquage métabolique des glycanes de cellules eucaryotes (lignée cellulaire du cancer de la prostate, PC-3) ou de bactéries didermes à mycomembranes (Corynebacterium glutamicum).Les composés synthétisés ou utilisés dans cette thèse sont des saccharides fonctionnalisés par un groupement bio-orthogonal (groupements azido, alcyne ou méthylcyclopropène) ou des outils de marquage porteurs simultanément d’un groupement bio-orthogonal complémentaire (groupements cyclooctyne ou tétrazine) et d’une étiquette pouvant être détectée par une macromolécule fonctionnalisée par des fluorophores (D-biotine/stréptavidine ou 2,4-DiNitroPhénol/ anticorps anti-DNP). La solubilité, en milieu aqueux, des outils de marquage est un facteur limitant leur utilisation. Une partie des travaux de cette thèse a consisté à développer des outils de marquage plus solubles en milieu aqueux, par l’ajout d’un motif -sulfo--alanine. Ce motif porte une fonction acide sulfonique qui est déprotonée, à pH physiologique, favorisant ainsi la solubilité en milieu aqueux.L’incorporation métabolique des saccharides fonctionnalisés ainsi que la capacité des outils à marquer les cellules (après incorporation métabolique) est évaluée, sur l’un ou l’autre des modèles biologiques, par analyse en cytométrie en flux ou par microscopie confocale. / Glycans are biomolecules made up of a chain of monosaccharides bound together by glycosidic bonds. The nature and abundance ofmonosaccharides forming the glycanic chain and the arrangement of glycosylation patterns differ greatly depending on the organism of origin. The biosynthesis and degradation of these polysaccharide architectures are finely regulated by specific enzymatic systems and are organized within the various cell compartments. Glycans are used in various biological processes: energy reserves, protein folding and stability, cell recognition and adhesion to the extracellular matrix.This thesis focuses on the synthesis and use of compounds allowing the metabolic labeling of glycans of eukaryotic cells (cell line of prostate cancer, PC-3) or of diderm bacteria with mycomembranes (Corynebacterium glutamicum).The compounds synthesized or used in this thesis are saccharides functionalized by a bio-orthogonal groups (azido, alkyne or methylcyclopropene groups) or labeling tools simultaneously carrying a bio-orthogonal complementary function (cyclooctyne or tetrazine groups) and a label that can be detected by a macromolecule functionalized by fluorophores (D-biotin/streptavidine or 2,4-DiNitroPhenol/ anti-DNP antibodies). The solubility of labeling tools in aqueous media is a limiting factor. Part of the work of this thesis has been to develop more water-soluble labeling tools by adding a -sulfo--alanine pattern. This pattern has a sulfonic acid function, which is deprotonated at physiological pH, thus promoting aqueous solubility.The metabolic uptake of functionalized saccharides and the ability of tools to label cells (after metabolic uptake) are evaluated in either biological model, by flow cytometry analysis or confocal microscopy.
6

Estimating the time-dependent RNA kinetic rates in the cell cycle

Liu, Haiyue 20 December 2022 (has links)
Die Menge an RNA in Eukaryonten wird durch ihre kinetischen Transkriptions-, Verarbeitungs- und Abbauraten bestimmt. Diese kinetischen Raten wurden bereits ausführlich in Zellpopulationen untersucht, allerdings unter der Annahme, dass diese in verschiedenen Zelltypen identisch sind. Die Genexpression ist jedoch während biologischer Prozesse wie z.B der Zellproliferation, Zelldifferenzierung und Zellteilung hochdynamisch. Die Untersuchung der RNA- Kinetikraten in Einzelzellen, die sich in verschiedenen Phasen desselben dynamischen Prozesses befinden, kann uns ein umfangreicheres Bild davon geben, wie RNA-Kinetikraten die Genexpression zeitabhängig koordinieren. In diesem Projekt, Wir haben die Methode der RNA- Stoffwechselmarkierung und der biochemischen Nukleosidkonversion mit der Einzelzell-RNA- Sequenzierung kombiniert. Wir leiteten ein zeitabhängiges kinetisches Geschwindigkeitsmodell ab und schätzten RNA-Transkriptions- und - Abbauraten über den zeitlichen Verlauf des Zellzyklus ab. Dabeiverwendeten wir Näherungen basierend auf der Lösung des resultierenden Differentialgleichungssystems. Wir fanden heraus, dass Transkriptions- und Abbauraten der meisten zyklischen Gene hochdynamisch sind. Unterschiedliche kinetische Regulationsmuster formen spezifische Genexpressionsprofile. Etwa 89 % der 377 von uns analysierten zyklischen Gene werden durch dynamische Transkriptions- und Abbauraten reguliert. Während der dynamischen Transkriptionsrate beobachteten wir auch, dass einige zyklische Gene durch dynamische Zerfallsraten angetrieben wurden. Unsere Studie bekräftigt die Bedeutung der zeitlichen Regulation von der Genexpression durch Produktion und Zerfall. Darüber hinaus hat die von uns entwickelte Methode das Potenzial, an verschiedene biologische Prozesse angepasst zu werden. Unser Ansatz in dieser Studie kann die Untersuchung der zeitlichen Genexpressionsregulation und der RNS- Kinetikraten voranbringen. / RNA abundance in eukaryotes is determined by its kinetic rates of transcription, processing and degradation. Each of the kinetic rates has been extensively studied in bulk cell populations assuming they are equal in different cells. However, gene expression is highly dynamic during biological processes such as cell proliferation, cell differentiation, and cell division. Investigation of RNA kinetic rates in individual cells which are in different phases of the same dynamic process can give us a more comprehensive picture of how RNA kinetic rates coordinate gene expression in a time-dependent manner. In this project, we adapted the RNA metabolic labeling and biochemical nucleoside conversion method to droplet- based single-cell RNA sequencing. We derived a time- dependent kinetic rate model and estimated RNA transcription and degradation rates over the time course of the cell cycle using approximations based on the solution of the resulting system of differential equations. We found that transcription and degradation rates of most cycling genes are highly dynamic. Different kinetic regulation patterns shape specific gene expression profiles. Around 89% of the 377 cycling genes we analyzed are regulated by dynamic transcription and degradation rates. While dynamic transcription rate was prevalent, we also observed some cycling genes were driven by dynamic decay rates. Our study underscores the importance of temporal gene expression regulation by both production and decay. Moreover, the method we developed has the potential to be adapted to different biological processes. We suggest that our approach can advance the study of temporal gene expression regulation and RNA kinetic rates.
7

Etablierung eines Nachweisverfahrens zur Untersuchung der räumlichen und zeitlichen Verteilung mitochondrial translatierter Proteine mit hochauflösender STED-Mikroskopie durch metabolische Markierung mit nicht-kanonischen Aminosäuren / Development of a protocol for the investigation of the spacial and temporal distribution of mitochondrially translated proteins with high resolution STED microscopy using metabolic labeling with non-canonical amino acids

Heuser, Moritz Fabian 02 May 2017 (has links)
No description available.
8

New Analytical Tools to Interrogate Inositol Pyrophosphate Signaling

Harmel, Robert Klaus 26 June 2020 (has links)
Inositolpyrophosphate (PP-InsPs) sind eine wichtige Gruppe eukaryotischer Botenstoffe, die mit verschiedenen Prozessen wie Apoptose, Phosphathomeostase und Insulinsignalkaskaden verknüpft sind. Trotz ihrer Entdeckung vor mehr als 20 Jahren bleibt es eine Herausforderung, die Signalmechanismen dieser Moleküle zu verstehen. Ursachen dafür sind der limitierte Zugang zu synthetischen PP-InsPs und ein Mangel an allgemein zugänglichen analytischen Methoden. Daher wurden in dieser Arbeit chemische und analytische Verfahren entwickelt, um unser Verständnis von diesen Molekülen sowohl auf ein biochemischer als auch auf zelluläre Ebene zu verbessern. Um der Knappheit an synthetischen PP-InsPs entgegen zu wirken, wurde eine hocheffiziente chemoenzymatische Synthese entwickelt, bei der mehr als 100 mg aller wesentlichen PP-InsPs aus Säugern hergestellt werden konnten. Parallel wurde ein neues analytisches Werkzeug entwickelt, dass Konzentrationen von PP-InsPs in komplexen Proben quantifizieren konnte. Mittels Enzymkatalyse konnten 13C-markiertes myo-inositol und 13C-markierte PP-InsPs hergestellt werden und niedrige Konzentrationen mit nuklearer Magnetresonanzspektroskopie detektiert werden. In vitro waren diese Verbindungen sehr nützlich, um PP-InsP Kinasen von Pflanzen und Säugern zu charakterisieren. Endogene Konzentrationen von PP-InsPs konnten durch metabolisches Markieren mit 13C-markiertem myo-inositol in humanen Zelllinien quantifiziert werden. Letztendlich wurde mittels eines neuen entwickelten proteomischen Ansatzes endogene Proteinpyrophosphorilierung, eine von PP-InsP eingebaute posttranslationale Proteinmodifikation, in menschlichen Zelllinien zum ersten Mal nachgewiesen. Zusammenfassend haben die aufgelisteten chemischen und analytischen Werkzeuge ein hohes Potenzial unser Verständnis der Signalmechanismen hinter den diversen Phänotypen der PP-InsPs zu stärken und Forschungsarbeit in dieser Richtung zu beschleunigen. / Inositol pyrophosphates (PP-InsPs) are an important group of second messengers that intersect with a wide range of processes in eukaryotic cells including phosphate homeostasis, insulin signaling and apoptosis. Despite their discovery more than two decades ago, elucidating the underlying signaling mechanisms remains a significant challenge. Therefore, a new set of chemical and analytical methods was developed here to improve our understanding of these intriguing molecules on the biochemical and cellular level. To overcome the shortage of synthetic PP-InsPs, a highly efficient and scalable chemoenzymatic approach was designed and the major mammalian PP-InsPs could be obtained in hundreds of milligram quantities and in high purity. In parallel, a new analytical tool was developed to quantify levels of PP-InsPs in complex samples. Chemoenzymatic access to 13C-labeled myo-inositol and 13C-labeled PP-InsPs enabled the detection of low concentrations of PP-InsPs using nuclear magnetic resonance spectroscopy. In vitro, these compounds were of great use for the biochemical characterization of PP-InsPs kinases from mammals and plants. Endogenous pools of PP-InsPs from human cell lines were identified and quantified by metabolic labeling with 13C-labeled myo-inositol. Finally, a new proteomics workflow towards the detection of protein pyrophosphorylation, a posttranslational modification mediated by PP-InsPs, using mass spectrometry was optimized and endogenously modified mammalian proteins could be identified for the first time and with high confidence. Taken together, the chemical and analytical tools presented here have great potential to accelerate the understanding of PP-InsP signaling and metabolism. Access to large amounts of PP-InsPs together with a reliable quantification method and the detection of endogenous protein pyrophosphorylation sites will be essential to unravel the signaling mechanisms underlying the diverse phenotypes associated with these metabolites.
9

Charakterisierung des Proteoms von Ralstonia eutropha H16 unter lithoautotrophen und anaeroben Bedingungen

Kohlmann, Yvonne 18 June 2015 (has links)
Das Biopolymer-produzierende Knallgasbakterium Ralstonia eutropha H16 gilt mit seinem außergewöhnlichen Stoffwechsel als vielversprechender Produktionsstamm für die weiße Biotechnologie. Es wächst auf einer Vielzahl organischer Substrate sowie chemolithoautotroph mit H2 und CO2 als einzige Energie- bzw. Kohlenstoffquelle. Unter anaeroben Bedingungen ist es zudem zur Denitrifikation befähigt. In dieser Arbeit wurde das Proteinprofil von R. eutropha unter chemolithoautotrophen sowie anaeroben Bedingungen mittels GeLC-MS/MS untersucht. Beide Proteomstudien offenbarten, dass die Nutzung unterschiedlicher Elektronendonoren bzw. -akzeptoren mit zahlreichen Veränderungen im Proteinbestand der Zellen einherging. Hierbei waren neben Proteinen metabolischer und Transportprozesse auch jene der Zellbewegung betroffen. Die Ergebnisse stellen im Vergleich zu vorangegangenen Studien den bisher umfassendsten Überblick zum Proteinbestand beim H2-basierten sowie anaeroben Wachstum in R. eutropha dar. Von besonderer Bedeutung war dabei das Einbinden der Analyse der Membran als Ort wichtiger Energie- und Transportprozesse. Besonderes Interesse galt einem unter H2/CO2-Bedingungen abundanten Zweikomponentensystem. Sequenzvergleiche zeigten Ähnlichkeit zum Regulationssystem der Katabolitrepression des Biphenylabbaus in Acidovorax sp. KKS102. Die Deletion des Response-Regulator-Gens führte zu vielfältigen Wachstumseffekten auf Substraten wie Fructose, Glycerin sowie auf H2/CO2. Der pleiotrope Phänotyp sowie die Ergebnisse von Genexpressionsstudien und der Suche nach Regulator-Bindestellen lassen eine globale Rolle des Systems im Energie- und/oder Kohlenstoffmetabolismus von R. eutropha H16 annehmen. Histidin-Kinase und Response Regulator wurden in GloS bzw. GloR umbenannt. Die vorliegende Arbeit zeigt eindrucksvoll das Potential der Proteomik als Teil der funktionellen Genomik für den Anstoß neuer Forschungsansätze zur Evaluierung des biotechnologischen Potentials von Mikroorganismen. / Due to its remarkable metabolism the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16 is ranked as a promising production strain for white biotechnology. It grows on a wide range of organic substrates as well as lithoautotrophically on H2 and CO2 as sole energy and carbon source, respectively. Under anaerobic conditions it thrives by denitrification. This thesis focused on characterizing the protein profiles of lithoautotrophically and anaerobically grown R. eutropha cells. Proteome analyses revealed an extensive protein repertoire adapting the organism to alternative electron donors and acceptors, respectively. Changes concerned proteins involved in metabolic and transport processes as well as in cell movement. Compared to previous studies the results reported here offer the most comprehensive proteomic survey regarding the H2-based as well as anaerobic lifestyle of R. eutropha so far. In this context analyzing the cell membrane as a place for a number of energy, transport and signal transduction processes was of particular importance. Special interest aroused the identification of a two-component system upregulated on H2/CO2. Sequence analysis offered high similarity to the regulatory system for catabolite control of biphenyl degradation in Acidovorax sp. KKS102. Deletion of the response regulator gene led to versatile growth effects on substrates such as fructose and glycerol as well as H2/CO2. This pleiotrophic phenotype as well as the results of gene expression studies and the search for regulator binding sites suggests that the two-component system is a global player in energy and/or carbon metabolism in R. eutropha and possibly other bacteria. Thus, histidine kinase and response regulator have been renamed GloS/R. Since their characterization was initiated by proteomic data this study impressively elucidates the power of functional genomics in terms of revealing new research approaches to evaluate the biotechnological use of microbes.
10

Translational control by the ribosomal protein Asc1p/Cpc2p in Saccharomyces cerevisiae / Translationelle Kontrolle durch das ribosomale Protein Asc1p/Cpc2p in Saccharomyces cerevisiae

Rachfall, Nicole 27 October 2010 (has links)
No description available.

Page generated in 0.485 seconds