211 |
Three-dimensional trajectories affect the epaxial muscle activity of arboreal snakes crossing gapsJorgensen, Ryan 16 June 2017 (has links)
No description available.
|
212 |
EFFECTS OF INCLINE ON CHAMELEON LOCOMOTION: <i>IN VIVO</i> MUSCLE ACTIVITY AND THE THREE-DIMENSIONAL HINDLIMB KINEMATICSHIGHAM, TIMOTHY EDWARD 02 September 2003 (has links)
No description available.
|
213 |
Optomotor Response Reduced by Procaine Injection in the Central Complex of the cockroach, Blaberus discoidalisKesavan, Malavika 21 February 2014 (has links)
No description available.
|
214 |
Morphological Correlates of Locomotion in Anurans: Limb Length, Pelvic Anatomy and Contact StructuresSimons, Verne F. H. 07 August 2008 (has links)
No description available.
|
215 |
A computer simulation study of omnidirectional supervisory control for rough-terrain locomotion by a multilegged robot vehicle/Lee, Wha-Joon January 1984 (has links)
No description available.
|
216 |
Kinematic optimal design of a six-legged walking machine /Song, Shin-Min January 1984 (has links)
No description available.
|
217 |
Musculo-skeletal dynamics and multiprocessor control of a biped model in a turning maneuver /Chen, Ben-Ren January 1985 (has links)
No description available.
|
218 |
Design of a Novel Tripedal Locomotion Robot and Simulation of a Dynamic Gait for a Single StepHeaston, Jeremy Rex 02 October 2006 (has links)
Bipedal robotic locomotion based on passive dynamics is a field that has been extensively researched. By exploiting the natural dynamics of the system, these bipedal robots consume less energy and require minimal control to take a step. Yet the design of most of these bipedal machines is inherently unstable and difficult to control since there is a tendency for the machine to fall once it stops walking.
This thesis presents the design and analysis of a novel three-legged walking robot for a single step. The STriDER (Self-excited Tripedal Dynamic Experimental Robot) incorporates aspects of passive dynamic walking into a stable tripedal platform. During a step, two legs act as stance legs while the other acts as a swing leg. A stance plane, formed by the hip and two ground contact points of the stance legs, acts as a single effective stance leg. When viewed in the sagittal plane, the machine can be modeled as a planar four link pendulum. To initiate a step, the legs are oriented to push the center of gravity outside of the stance legs. As the body of the robot falls forward, the swing leg naturally swings in between the two stance legs and catches the STriDER. Once all three legs are in contact with the ground, the robot regains its stability and the posture of the robot is then reset in preparation for the next step.
To guide the design of the machine, a MATLAB simulation was written to allow for tuning of several design parameters, including the mass, mass distribution, and link lengths. Further development of the code also allowed for optimization of the design parameters to create an ideal gait for the robot. A self-excited method of actuation, which seeks to drive a stable system toward instability, was used to control the robot. This method of actuation was found to be robust across a wide range of design parameters and relatively insensitive to controller gains. / Master of Science
|
219 |
Effect of boundaries on swimming of Paramecium multimicronucleatumJana, Saikat 03 September 2013 (has links)
Microorganisms swimming in their natural habitat interact with debris and boundaries, which can modify their swimming characteristics. However, the boundary effect on swimming microorganisms have not been completely understood yet, and is one of most active areas of research. Amongst microorganisms, unicellular ciliates are the fastest swimmers and also respond to a variety of external cues. We choose Paramecium multimicronucleatum as a model system to understand the locomotion of ciliates.
First, we explore the effects of boundaries on swimming modes of Paramecium multimicronu- cleatum by introducing them in 2D films and 1D channels. The geometric confinements cause the Paramecia to transition between: a directed, a meandering and a self-bending behaviors. During the self-bending mode the cell body exerts forces on the walls; which is quantified by using a beam bending analogy and measuring the elasticity of the cell body. The first inves- tigation reveals the complicated swimming patterns of Paramecium caused by boundaries.
In the second study we investigate the directed swimming of Paramecium in cylindrical capillaries, which mimics the swimming of ciliates in the pores of soil. A finite-sized cell lo- comoting in extreme confinements creates a pressure gradient across its ends. By developing a modified envelop model incorporating the confinements and pressure gradient effects, we are able to predict the swimming speed of the organisms in confined channels.
Finally we study how Paramecium can swim and feed efficiently by stirring the fluid around its body. We experimentally employ "-Particle Image Velocimetry to characterize flows around the freely swimming Parameicum and numerically use Boundary Element Method to quantify the effect of body shapes on the swimming and feeding process. Results show that the body shape of Paramecium (slender anterior and bulky posterior) is hydrodynamically optimized to swim as well as feed efficiently.
The dissertation makes significant advances in both experimentally characterizing and the- oretically understanding the flow field and locomotion patterns of ciliates near solid bound- aries. / Ph. D.
|
220 |
Design and Control of a Humanoid Robot, SAFFiRLahr, Derek Frei 29 May 2014 (has links)
Emergency first responders are the great heroes of our day, having to routinely risk their lives for the safety of others. Developing robotic technologies to aid in such emergencies could greatly reduce the risk these individuals must take, even going so far as to eliminate the need to risk one life for another. In this role, humanoid robots are a strong candidate, being able to take advantage of both the human engineered environment in which it will likely operate, but also make use of human engineered tools and equipment as it deals with a disaster relief effort.
The work presented here aims to lessen the hurdles that stand in the way through the research and development of new humanoid robot technologies. To be successful in the role of an emergency first responder requires a fantastic array of skills. One of the most fundamental is the ability to just get to the scene. Unfortunately, it is at this level that humanoid robots currently struggle.
This research focuses on the complementary development of physical hardware, digital controllers, and trajectory planning necessary to achieve the research goals of improving the locomotion capabilities of a humanoid robot. To improve the physical performance capabilities of the robot, this research will first focus on the interaction between the hip and knee actuators. It is shown that much like the human body, a biped greatly benefits from the use of biarticular actuation. Improvements in efficiency as much as 30% are possible by simply interconnecting the hip roll and knee pitch joints.
Balancing and walking controllers are designed to take advantage of the new hardware capabilities and expand the terrain capabilities of bipedal walking robots to uneven and non-stationary ground. A hybrid position/force control based balancing controller stabilizes the robot's COM regardless of the terrain underfoot. In particular two feedback mechanisms are shown to greatly improve the stability of bipedal systems in response to unmodelled dynamics. The hybrid position/force approach is shown through experiments to greatly extend humanoid capabilities to many types of terrain.
With robust balancing ensured, walking trajectories are defined using an improved linear inverted pendulum model that incorporates the swing leg dynamics. The proposed method is shown to significantly reduce the control authority (by 50%) required for satisfactory trajectory following. Three parameters are identified which provide for quick manual or numerical solutions to be found to the trajectory problem.
The walking and balance controller were operated on four different terrains successfully, strewn plywood, gravel, and high pile synthetic grass. Furthermore, SAFFiR is believed to be the first bipedal robot to ever walk on sand. The hardware enabled force control architecture was very effective at modulating ground reaction torques no matter the ground conditions. This in combination with highly accurate state estimation provided a very stable balance controller on top of which successful walking was demonstrated. / Ph. D.
|
Page generated in 0.0885 seconds